
Pricing Problems under the Nested Logit Model with a Quality
Consistency Constraint

James M. Davis1, Huseyin Topaloglu2, David P. Williamson2

April 10, 2016

Abstract

We consider pricing problems when customers choose among the products according to the
nested logit model and there is a quality consistency constraint on the prices charged for the
products. We consider two types of quality consistency constraint. In the first type of constraint,
there is an inherent ordering between the qualities of the products in a particular nest and the
price for a product of a higher quality level should be larger. In the second type of constraint,
different nests correspond to different quality levels and the price for any product that is in
a nest corresponding to a higher quality level should be larger than the price for any product
that is in a nest corresponding to a lower quality level. The prices for the products are chosen
within a finite set of possible prices. We develop algorithms to find the prices to charge for
the products to maximize the expected revenue obtained from a customer, while adhering to
a quality consistency constraint. Our algorithms are based on solving linear programs whose
sizes scale polynomially with the number of nests, number of products and number of possible
prices for the products. We also give extensions to the cases beyond the two types of quality
consistency constraints. Numerical experiments indicate that our algorithms can effectively
compute the optimal prices even when there is a large number of products in consideration.

In many retail environments, there are multiple substitutable products that serve the needs of a

customer and customers make a choice among the available products by comparing them with

respect to attributes such as price, quality and richness of features. When such substitution

possibilities are present, the demand for a product depends not only on its own attributes, but also

on the attributes of the other products, creating interactions between the demands for different

products. Discrete choice models become useful to capture such demand interactions, since they

represent the demand for a particular product as a joint function of the attributes of all available

products. Capturing the interactions between the demands for the products has recently become

more important than ever, as online retailers and travel agencies bring a large variety of options

to customers. Nevertheless, optimization models to find the right prices to charge for the products

quickly become complicated when one uses sophisticated choice models to capture the interaction

between the demands for the products. These optimization models become even more complicated

when one imposes operational constraints on the prices charged for the products.

In this paper, we consider pricing problems when customers choose according to the nested logit

model and there is a quality consistency constraint on the prices charged for the products. Under

the nested logit model, the products are grouped into nests. The choice process of the customer

proceeds in two stages. In the first stage, the customer decides either to make a purchase in one of

1Department of Industrial and Enterprise Systems Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, davis152@illinois.edu.

2School of Operations Research and Information Engineering, Cornell University, Ithaca, NY 14850,
topaloglu@orie.cornell.edu, dpw@cs.cornell.edu.

1

the nests or to leave the system without making a purchase. In the second stage, if the customer

decides to make a purchase in one of the nests, then the customer selects one of the products in the

chosen nest. This choice process is shown in Figure 1.a. The customer starts from the root node of

the tree. In the first stage, she chooses one of the nests or the no purchase option. In the second

stage, if she has chosen one of the nests in the first stage, then she selects one of the products in the

chosen nest. In the quality consistency constraint that we impose on the prices, there is an intrinsic

ordering between the qualities of the products. The quality consistency constraint ensures that the

prices charged for the products of higher quality are also larger. The goal is to find the prices to

charge for the products to maximize the expected revenue obtained from a customer, while making

sure that the prices satisfy the quality consistency constraint.

We begin by considering two types of quality consistency constraint. In the first type of

constraint, there is an intrinsic ordering between the qualities of the products in each nest. We

refer to this quality consistency constraint as price ladders inside nests. Figure 1.b illustrates this

quality consistency constraint with three products in each nest, where the price of product j in

nest i is denoted by pij . The products in each nest are indexed such that the third product is of

higher quality than the second product in the same nest, which is, in turn, of higher quality than

the first product. Therefore, the price of the third product should be larger than the price of the

second product, which should, in turn, be larger than the price of the first product. There is no

dictated ordering between the qualities or prices of the products in different nests. In the second

type of constraint, there is an intrinsic ordering between the qualities of the nests, but there is

no clear ordering between the qualities of the products in the same nest. We refer to this quality

consistency constraint as price ladders between nests. Figure 1.c illustrates this quality consistency

constraint with three nests. The nests are indexed such that the third nest corresponds to a higher

quality level than the second nest, which, in turn, corresponds to a higher quality level than the

first nest. So, the price for any product in the third nest should be larger than the price for any

product in the second nest, which should, in turn, be larger than the price for any product in the

first nest. Once we consider price ladders inside nests and price ladders between nests, we make

extensions to the case where there are price ladders both inside and between nests, as well as to

the case where some of the products are excluded from the quality consistency constraint.

Charging quality consistent prices is practically important since such prices convey a sense of

fairness to customers. Rusmevchientong et al. (2006) consider quality consistent pricing problems,

motivated by the pricing problems faced by General Motors. In their setting, the prices for the

automobiles with richer features should also be larger. They use a nonparametric choice model,

show that the corresponding pricing problem with a quality consistency constraint is NP hard

and provide an approximation algorithm. Motivated by the pricing problems faced by the fast

fashion retailer Zara, Caro and Gallien (2015) develop a pricing model with a quality consistency

constraint. They organize the products into N clusters with the understanding that the prices for

the products in cluster i should be larger than the prices for the products in cluster i − 1. This

quality consistency constraint is similar to our price ladders between nests, where their clusters

2

No
Purc.

Prd.
1

Prd.
2

Prd.
1

Prd.
2

Prd.
1

Prd.
2

Prd.
1

Prd.
2

Prd.
3

Prd.
1

Prd.
2

Prd.
3

Prd.
1

Prd.
2

Prd.
1

Prd.
2

Prd.
1

Prd.
2

Nest
1

Nest
2

Nest
3

Nest
1

Nest
2

Nest
3

Nest
1

Nest
2

Root Root Root

ଵଵ ଵଶ ଵଷ max ,ଵଵ	 ଵଶ 	 min ,ଶଵ	 ଶଶ 	,≤ ≤ ଶଵ≥ ≥ଶଶ ≥ଶଷ

max ,ଶଵ	 ଶଶ 	 min ,ଷଵ	 ଷଶ 	≤

(a) (b) (c)

No
Purc.

No
Purc.

Figure 1: Nested logit model, price ladders inside nests and price ladders between nests.

play the role of our nests. Subramanian and Sherali (2010) develop a mixed integer programming

model to address pricing problems faced by Oracle Corporation. In their model, they impose

constraints to ensure that there is a prespecified relationship between the prices charged for the

products. Gallego and Stefanescu (2009) develop a model to provide upgrades to customers in the

context of airline industry. To ensure fairness, they point out that if the customers need to be

upgraded, then the customers with low fare class reservations should be upgraded to a relatively

lower fare class, when compared with the customers with high fare class reservations. They show

that if the prices satisfy a certain quality consistency constraint, then their model indeed upgrades

the customers with low fare class reservations to a relatively lower fare class, when compared with

the customers with high fare class reservations. There is also some theoretical work to address

quality consistency constraints. In particular, Aggarwal et al. (2004) and Briest and Krysta (2007)

study the computational complexity of pricing problems with a quality consistency constraint when

the customers choose according to a nonparametric choice model. They develop approximation

algorithms and polynomial time approximation schemes.

In this paper, we begin by considering two types of quality consistency constraint. In price

ladders inside nests, there is an intrinsic ordering between the qualities of the products in the same

nest and the prices for the products of higher quality should also be larger. As an example of a

situation where price ladders inside nests become relevant, we consider the case where the nests

correspond to different brands and the products within a particular nest correspond to the variants

of a particular brand with different qualities. There is a verifiable ordering between the qualities of

the different variants of a particular brand and the customers expect that the prices for the variants

of higher quality should also be larger. In contrast, it is difficult to compare the variants of different

brands in terms of quality and there is no reason for the customers to expect a particular ordering

3

between the prices for the variants of different brands. On the other hand, in price ladders between

nests, different nests correspond to different quality levels and there is an intrinsic ordering between

the quality levels of the nests. The price for any product in a nest corresponding to a higher quality

level should be larger than the price for any product in a nest corresponding to a lower quality

level. As an example of a situation where price ladders between nests become relevant, we consider

the case where the nests correspond to different quality levels and the products within a particular

nest correspond to products that differ in cosmetic or personal features, such as color. The customers

expect that the prices for the products in a nest corresponding to a higher quality level are larger

than the prices for the products in a nest corresponding to a lower quality level, but there is no

reason for the customers to expect a particular ordering between the prices for the products in a

particular nest since these products differ in cosmetic or personal features.

Price ladders inside and between nests cover a variety of useful situations, but we provide

extensions to cover other types of quality consistency constraints. First, we show how to deal with

price ladders jointly both inside and between nests. For example, considering the case with two

nests and three products in each nest in Figure 1.b and assuming that the second nest corresponds

to a higher quality level than the first nest, we show how to ensure that the prices for the products

satisfy p11 ≤ p12 ≤ p13 ≤ p21 ≤ p22 ≤ p23, so that there is a prespecified ordering between the

prices of the products in all nests. Second, we show how to deal with the case where some of the

products are excluded from the quality consistency constraint. Third, we show how to deal with

the case where there is a padding in the quality consistency constraint. For example, considering

the prices for the products in the first nest in Figure 1.b, we show how to ensure that the prices for

the products satisfy p11 + δ ≤ p12 and p12 + δ ≤ p13 for some δ ∈ <. If δ > 0, then these constraints

separate the prices of the products by a minimum amount of δ, whereas if δ < 0, then these

constraints allow overlapping the prices of the products by a maximum amount of −δ.

Main Results and Contributions. We give algorithms to find the optimal prices to charge under

price ladders inside nests and price ladders between nests. In our setting, there are m nests and n

products in each nest. The price of each product is chosen within a finite set of possible prices and

there are q possible prices for each product. Therefore, the vector of prices charged for the products

in a nest takes values in <n and each component of this vector takes one of the q possible values,

which implies that there are O(qn) possible price vectors that we can charge for the products

in a nest. Under price ladders inside nests, we show that the optimal price vector to charge in

a nest is one of at most nq candidate price vectors and all of these candidate price vectors can

be constructed by solving a linear program through the parametric simplex method. The linear

program that we use to come up with the candidate price vectors has O(nq) decision variables and

O(nq2) constraints. This result reduces the number of possible price vectors to consider for each

nest from O(qn) to O(nq). However, although the optimal price vector to charge in each nest is one

of O(nq) candidate price vectors, computing the optimal prices to charge over all nests can still

be challenging, since there are O((nq)m) different ways of combining nq candidate price vectors

from m nests. To deal with this difficulty, we give a linear program with O(m) decision variables

4

and O(mnq) constraints that finds the optimal combination of price vectors to charge in different

nests. Thus, we solve a linear program with O(nq) decision variables and O(nq2) constraints by

using the parametric simplex method to come up with O(nq) candidate price vectors for each

nest. We find the optimal combination of the candidate price vectors to charge in different nests

by solving another linear program with O(m) decision variables and O(mnq) constraints.

Pricing problems under price ladders between nests are more difficult than the ones under price

ladders inside nests, since price ladders between nests create interactions between the prices charged

for the products in different nests. Under price ladders between nests, we show that the optimal

price vector to charge in a nest is one of at most nq3 candidate price vectors and all of these

candidate price vectors can be constructed by solving a linear program through the parametric

simplex method. The linear program that we use to come up with the candidate price vectors has

O(nq) decision variables and O(n) constraints. To find the optimal combination of price vectors

to charge in different nests, we give a linear program with O(mq) decision variables and O(mnq4)

constraints. Our numerical experiments consider test problems with as many as m = 6 nests,

n = 30 products in each nest and q = 30 possible prices for each product, yielding a total of 180

products. Under price ladders inside nests, we compute the optimal prices in a fraction of a second,

whereas under price ladders between nests, we compute the optimal prices in 23 seconds.

In addition to algorithms, we also make contributions through our formulation of the pricing

problem. In our formulation, the price of each product is chosen within a finite set of possible prices

and the set of possible prices for a product is defined by the modeler. The modeler can design the

set of possible prices for a product to correspond to the prices that are commonly used in retail, such

as prices that end in 99 cents or prices that are in increments of 10 dollars. Furthermore, the nested

logit model commonly assumes that there is a parametric relationship between the attractiveness of

a product and its price. For example, it is common to assume that if the price charged for product

j in nest i is pij , then the attractiveness of this product is given by exp(αij−βij pij), where αij and

βij are fixed parameters; see Li and Huh (2011) and Gallego and Wang (2014). Our formulation

of the pricing problem does not assume a parametric relationship between the attractiveness of a

product and its price, allowing the attractiveness of a product to depend on its price in an arbitrary

fashion. Finally, we use a finite set of possible prices for a product, but we give results that provide

guidelines on how to choose the finite set of possible prices to obtain good approximations when

the prices are actually allowed to lie on a continuum.

Related Literature. There is significant amount of work on solving pricing problems under the

multinomial and nested logit models. Under the multinomial logit model, Hanson and Martin (1996)

observe that the expected revenue is not a concave function of the prices for the products. Song

and Xue (2007) and Dong et al. (2009) express the expected revenue as a function of the market

shares of the products and show that the expected revenue is a concave function of the market

shares. Chen and Hausman (2000) and Wang (2012) focus on joint assortment and pricing problems

under the multinomial logit model, where the set of products offered to the customers and the prices

5

of the offered products are decision variables. Zhang and Lu (2013) discuss problems where the

prices charged for the products are dynamically adjusted over time as a function of the remaining

inventory. Davis et al. (2013) show that pricing problems under the multinomial logit model with a

finite set of possible prices can be formulated as a linear program. Keller et al. (2014) study pricing

problems where the attractiveness of a product depends on its price in a general fashion and there

are constraints on the expected number of sales for the products.

Pricing problems under the nested logit model have recently started seeing attention. Li and

Huh (2011) proceed under the assumption that the products in the same nest have the same price

sensitivity and show that the pricing problem can be formulated as a convex program. Gallego

and Wang (2014) consider the case where the products in the same nest do not necessarily have

the same price sensitivity. They show that the expected revenue function can have multiple local

maxima and show how to find a local maximum of the expected revenue function. They also give

sufficient conditions that eliminate multiple local maxima. Rayfield et al. (2013) show how to

compute solutions with a performance guarantee even when there are multiple local maxima of the

expected revenue function. Li and Huh (2013) and Li et al. (2015) consider pricing problems under

the nested logit model, where the choice process proceeds in more than two stages. The earlier work

under the nested logit model does not consider quality consistency constraints.

A useful approach for solving optimization problems under the nested logit model is to construct

a small collection of candidate solutions for each nest and to solve a linear program to combine

the candidate solutions for the different nests. Gallego and Topaloglu (2014) and Feldman and

Topaloglu (2014) follow this approach for assortment problems, where the prices of the products are

fixed and the goal is to find a set of products to offer to maximize the expected revenue obtained from

a customer. Our development is based on this general approach as well, but we need to overcome two

important challenges posed by pricing problems. First, constructing a small collection of candidate

price vectors to charge in each nest carefully exploits the structure of the pricing problem. In

particular, we use the property that the attractiveness of a product is decreasing in its price and it

is not clear how to construct a small collection of candidate price vectors when this property does

not hold. Second, under price ladders between nests, the prices charged in different nests interact

with each other since the prices in a nest corresponding to a higher quality level should be larger

than the prices in a nest corresponding to a lower quality level. Due to this interaction, finding

the optimal combination of the candidate price vectors from different nests becomes difficult. We

address this difficulty by using the linear programming formulation of a dynamic program that

finds the optimal combination of the candidate price vectors from different nests.

Organization. In Section 1, we study the pricing problem under price ladders inside nests. In

Section 2, we study the pricing problem under price ladders between nests. In Section 3, we give

extensions to other types of quality consistency constraints and give approximation guarantees when

the prices take values on a continuum but we use a finite set of possible prices for the products. In

Section 4, we give numerical experiments. In Section 5, we conclude.

6

1 Price Ladders Inside Nests

In this section, we consider the case with price ladders inside nests. In this setting, there is

an intrinsic ordering between the qualities of the products in the same nest and the prices for the

products of higher quality should also be larger. There is no intrinsic ordering between the qualities

or the prices of the products in different nests.

1.1 Problem Formulation

There are m nests and we index the nests by M = {1, . . . ,m}. In each nest, there are n products

and we index the products in each nest by N = {1, . . . , n}. For each product, there are q possible

prices. The possible prices for a product are given by Θ = {θ1, . . . , θq}. Without loss of generality,

we index the possible prices so that 0 < θ1 < θ2 < . . . < θq. We use pij ∈ Θ to denote the price

that we charge for product j in nest i. If we charge price pij for product j in nest i, then the

preference weight of this product is given by vij(pij). If we charge a larger price for a product, then

its preference weight becomes smaller, implying that vij(θ
1) > vij(θ

2) > . . . > vij(θ
q) > 0. Our

notation so far implies that the number of products in each nest is the same and the set of possible

prices that we can charge for each product is the same. However, these assumptions are only for

notational brevity and our results in the paper continue to hold with straightforward modifications

when there are different numbers of products in different nests and the sets of possible prices for

the different products are different.

We use pi = (pi1, . . . , pin) ∈ Θn to capture the price vector charged in nest i. As a function

of the price vector pi charged in nest i, we use Vi(pi) to denote the total preference weight of the

products in nest i, so that Vi(pi) =
∑

j∈N vij(pij). Under the nested logit model, if we charge the

price vector pi in nest i, then a customer that has already decided to make a purchase in nest i

chooses product j in this nest with probability vij(pij)/Vi(pi). In this case, if we charge the price

vector pi in nest i and a customer has already decided to make a purchase in this nest, then the

expected revenue obtained from this customer is given by

Ri(pi) =
∑
j∈N

pij
vij(pij)

Vi(pi)
=

∑
j∈N pij vij(pij)

Vi(pi)
. (1)

For each nest i, the nested logit model has a parameter γi ∈ [0, 1] characterizing the degree of

dissimilarity between the products in this nest. We use v0 to denote the preference weight of the no

purchase option. Under the nested logit model, if we charge the price vectors (p1, . . . , pm) ∈
Θm×n over all nests, then a customer decides to make a purchase in nest i with probability

Qi(p1, . . . , pm) = Vi(pi)
γi/(v0 +

∑
l∈M Vl(pl)

γl). The last expression provides the probability that

a customer chooses nest i as a function of the prices charged for all products in all nests. The

parameter γi magnifies or dampens the preference weights of the products in nest i.

According to the nested logit model, if we charge the price vectors (p1, . . . , pm) over all

nests, then a customer decides to make a purchase in nest i with probability Qi(p1, . . . , pm) =

7

Vi(pi)
γi/(v0 +

∑
l∈M Vl(pl)

γl). If the customer decides to make a purchase in nest i, then the

expected revenue obtained from this customer is Ri(pi). Thus, if we charge the price vectors

(p1, . . . , pm) over all nests, then the expected revenue from a customer is given by

Π(p1, . . . , pm) =
∑
i∈M

Qi(p1, . . . , pm)Ri(pi) =

∑
i∈M Vi(pi)

γi Ri(pi)

v0 +
∑

i∈M Vi(pi)γi
. (2)

Our goal is to find the price vectors (p1, . . . , pm) to charge over all nests to maximize the expected

revenue above subject to the constraint that the price vector charged in each nest satisfies a price

ladder constraint. To formulate the price ladder constraint, without loss of generality, we index the

products in each nest such that products with larger indices are of higher quality. In other words,

the products N = {1, . . . , n} in each nest are indexed in the order of increasing quality. The price

ladder constraint ensures that the price for a product of higher quality is larger. That is, the price

ladder constraint in nest i ensures that pi1 ≤ pi2 ≤ . . . ≤ pin. Thus, the set of feasible price vectors

in nest i can be written as Fi = {pi ∈ Θn : pij ≥ pi,j−1 ∀ j ∈ N \ {1}}. We want to find the price

vectors to charge over all nests to maximize the expected revenue from a customer while satisfying

the price ladder constraint, yielding the problem

z∗ = max
(p1, . . . , pm) ∈ Θm×n :

pi ∈ Fi ∀ i ∈M

{
Π(p1, . . . , pm)

}
. (3)

In the problem above, the price of each product takes values in the discrete set Θ. Furthermore,

the objective function depends on the prices of the products in a nonlinear fashion. Thus, this

problem is a nonlinear combinatorial optimization problem.

We emphasize two useful advantages of our formulation of problem (3). First, since the price

for each product is chosen among a set of possible prices given by Θ and we can design Θ in any

way we want, our formulation allows choosing the prices of the products among the prices that are

commonly used in retail, such as prices that end in 99 cents or prices that are in increments of 10

dollars. Second, the nested logit model commonly assumes a fixed functional relationship between

the price of a product and its preference weight. For example, as a function of the price pij of

product j in nest i, it is common to assume that the preference weight vij(pij) of this product

is given by vij(pij) = exp(αij − βij pij), where αij and βij are fixed parameters. In contrast, our

formulation of problem (3) does not rely on such a fixed functional relationship and we allow the

dependence between vij(pij) and pij to be arbitrary, as long as vij(pij) is decreasing in pij .

1.2 Connection to a Fixed Point Representation

In this section, we answer a question that becomes critical when developing a tractable solution

approach for problem (3). Assume that we have a collection of candidate price vectors Pi =

{pti : t ∈ Ti} to charge in nest i and all of the price vectors in the collection Pi satisfy the price

ladder constraint in the sense that pti ∈ Fi for all t ∈ Ti. We know that we can stitch together

an optimal solution to problem (3) by picking one price vector from each one of the candidate

8

collections P1, . . . ,Pm. In other words, we know that there exists an optimal solution (p∗1, . . . , p
∗
m)

to problem (3) that satisfies p∗i ∈ Pi for all i ∈M . The question that we want to answer is how we

can pick a price vector p∗i from the collection Pi for each nest i such that the solution (p∗1, . . . , p
∗
m) is

indeed optimal to problem (3). It is difficult to answer this question through complete enumeration

since complete enumeration requires checking the expected revenues from |P1|× . . .×|Pm| possible

solutions, which quickly gets intractable when the number of nests is large. To answer this question,

we relate problem (3) to the problem of computing the fixed point of an appropriately defined

function. In particular, for z ∈ <+, we define f(z) as

f(z) =
∑
i∈M

max
pi∈Pi

{
Vi(pi)

γi (Ri(pi)− z)
}
. (4)

The value of ẑ satisfying v0 ẑ = f(ẑ) is the fixed point of the function f(·)/v0. Since v0 z is increasing

and f(z) is decreasing in z with f(0) ≥ 0, there exists ẑ satisfying v0 ẑ = f(ẑ). In the next theorem,

we show that we can use this value of ẑ to construct an optimal solution to problem (3). In this

theorem, we recall that z∗ corresponds to the optimal objective value of problem (3).

Theorem 1 Assume that we have a collection of candidate price vectors Pi for each nest i such

that we can stitch together an optimal solution to problem (3) by picking one price vector from each

one of the collections P1, . . . ,Pm. Let the value of ẑ be such that v0 ẑ = f(ẑ) and p̂i be an optimal

solution to the problem

max
pi∈Pi

{
Vi(pi)

γi (Ri(pi)− ẑ)
}
. (5)

Then, we have Π(p̂1, . . . , p̂m) ≥ z∗.

Proof. We use (p∗1, . . . , p
∗
m) to denote an optimal solution to problem (3). By our assumption, we can

stitch together an optimal solution to problem (3) by picking one price vector from each one of the

collections P1, . . . ,Pm. Thus, we can assume that p∗i ∈ Pi for all i ∈M , which implies that solution

p∗i is feasible to the problem on the right side of (4) and we get f(ẑ) ≥
∑

i∈M Vi(p
∗
i)
γi (Ri(p

∗
i)−ẑ). In

this case, noting the fact that v0 ẑ = f(ẑ), we have v0 ẑ ≥
∑

i∈M Vi(p
∗
i)
γi (Ri(p

∗
i)− ẑ). Solving for

ẑ in the last inequality, we obtain ẑ ≥
∑

i∈M Vi(p
∗
i)
γi Ri(p

∗
i)/(v0 +

∑
i∈M Vi(p

∗
i)
γi). Noting that

z∗ = Π(p∗1, . . . , p
∗
m) =

∑
i∈M Vi(p

∗
i)
γi Ri(p

∗
i)/(v0 +

∑
i∈M Vi(p

∗
i)
γi) by the definition of Π(p1, . . . , pm)

in (2), the last inequality implies that ẑ ≥ z∗. Thus, to finish the proof, it is enough to show that

Π(p̂1, . . . , p̂m) = ẑ. Since p̂i is an optimal solution to problem (5), by the definition of f(z) in

(4) and the fact that v0 ẑ = f(ẑ), we have v0 ẑ = f(ẑ) =
∑

i∈M Vi(p̂i)
γi (Ri(p̂i) − ẑ). In this

case, focusing on the first and last expressions in the last chain of equalities and solving for ẑ, we

obtain ẑ =
∑

i∈M Vi(p̂i)
γi Ri(p̂i)/(v0 +

∑
i∈M Vi(p̂i)

γi) and the desired result follows by noting that

Π(p̂1, . . . , p̂m) =
∑

i∈M Vi(p̂i)
γi Ri(p̂i)/(v0 +

∑
i∈M Vi(p̂i)

γi). �

The connection of optimization problems under the nested logit model to a fixed point of a

function goes back to the work of Davis et al. (2014). Theorem 1 suggests the following approach

9

to obtain an optimal solution to problem (3). Assume that we have a collection of candidate price

vectors Pi = {pti : t ∈ Ti} for each nest i such that we can stitch together an optimal solution to

problem (3) by picking one price vector from each one of the collections P1, . . . ,Pm. Furthermore,

assume that each one of the price vectors in the candidate collection Pi = {pti : t ∈ Ti} satisfies the

price ladder constraint in the sense that pti ∈ Fi for all pti ∈ Pi. To obtain an optimal solution to

problem (3), we find the value of ẑ that satisfies v0 ẑ = f(ẑ). In this case, if we let p̂i be an optimal

solution to problem (5), then it follows from Theorem 1 that Π(p̂1, . . . , p̂m) ≥ z∗. Furthermore, since

pti ∈ Fi for all pti ∈ Pi, the solution (p̂1, . . . , p̂m) is feasible to problem (3). Therefore, (p̂1, . . . , p̂m) is

a feasible solution to problem (3) and provides an objective value to problem (3) that is at least as

large as the optimal objective value of this problem, which implies that (p̂1, . . . , p̂m) is an optimal

solution to problem (3), as desired. The discussion in this paragraph also provides an answer to

the question at the beginning of this section. In particular, if we know that we can stitch together

an optimal solution to problem (3) by picking one price vector from each one of the collections

P1, . . . ,Pm, then we can use Theorem 1 to obtain an optimal solution to problem (3).

One remaining question is how we can find the value of ẑ that satisfies v0 ẑ = f(ẑ) in a tractable

fashion. Noting that v0 z is increasing and f(z) is decreasing in z, we can find the value of ẑ that

satisfies v0 ẑ = f(ẑ) by solving the problem min{z : v0 z ≥
∑

i∈M maxpi∈Pi Vi(pi)
γi (Ri(pi)− z)},

where the decision variable is z. The constraint in this problem is nonlinear in z, but we can linearize

the constraint by using the additional decision variables y = (y1, . . . , ym) with the interpretation

that yi = maxpi∈Pi Vi(pi)
γi (Ri(pi) − z). In this case, we can find the value of ẑ that satisfies

v0 ẑ = f(ẑ) by solving the problem

min

{
z : v0 z ≥

∑
i∈M

yi, yi ≥ Vi(pi)γi (Ri(pi)− z) ∀ pi ∈ Pi, i ∈M

}
, (6)

where the decision variables are (z, y). The problem above is a linear program with O(m) decision

variables and
∑

i∈M O(|Pi|) constraints, which is tractable as long as the numbers of price vectors

in the collections P1, . . . ,Pm are relatively small. In the rest of our discussion, we focus on how

to construct a small collection of candidate price vectors Pi for each nest i such that we can

stitch together an optimal solution to problem (3) by picking one price vector from each one of the

collections P1, . . . ,Pm. Once we have these collections, we can solve problem (6) to find ẑ satisfying

v0 ẑ = f(ẑ) and we can use Theorem 1 to obtain an optimal solution to problem (3).

1.3 Characterizing Candidate Price Vectors

In this section, we give a characterization of the optimal price vector to charge in each nest. This

characterization ultimately becomes useful to construct a collection of candidate price vectors Pi for

each nest i such that we can stitch together an optimal solution to problem (3) by picking one price

vector from each one of the collections P1, . . . ,Pm. In the next theorem, we give a characterization of

the optimal price vector to charge in each nest. As discussed after the theorem, this characterization

requires maximizing a function that is separable by the products.

10

Theorem 2 Let (p∗1, . . . , p
∗
m) be an optimal solution to problem (3) providing the objective value

z∗ and set u∗i = max{γi z∗ + (1− γi)Ri(p∗i), z∗}. If p̂i is an optimal solution to the problem

max
pi∈Fi

{
Vi(pi) (Ri(pi)− u∗i)

}
, (7)

then (p̂1, . . . , p̂m) is an optimal solution to problem (3).

Proof. For notational brevity, we let R∗i = Ri(p
∗
i), V

∗
i = Vi(p

∗
i), R̂i = Ri(p̂i) and V̂i = Vi(p̂i). We

claim that V̂ γi
i (R̂i − z∗) ≥ (V ∗i)γi (R∗i − z∗) for all i ∈ M . To see this claim, we consider a

nest i that satisfies R∗i ≥ z∗. Since R∗i ≥ z∗, we have u∗i = max{γi z∗ + (1 − γi)R
∗
i , z
∗} =

γi z
∗ + (1 − γi)R∗i . Since p∗i is a feasible but not necessarily an optimal solution to problem (7),

we have V̂i (R̂i − u∗i) ≥ V ∗i (R∗i − u∗i). Plugging u∗i = γi z
∗ + (1− γi)R∗i into this inequality, we get

V̂i (R̂i−z∗)−(1−γi) V̂i (R∗i −z∗) ≥ γi V ∗i (R∗i −z∗). Arranging the terms in the last inequality gives

R̂i − z∗ ≥
[
γi
V ∗i
V̂i

+ (1− γi)
]

(R∗i − z∗). (8)

Noting that the dissimilarity parameter for nest i satisfies γi ∈ [0, 1], the function xγi is concave

in x and its derivative at point 1 is γi. Therefore, the subgradient inequality at point 1 yields

xγi ≤ 1 + γi (x − 1) = γi x + (1 − γi) for all x ∈ <+. Using the subgradient inequality with

x = V ∗i /V̂i, it follows that (V ∗i /V̂i)
γi ≤ γi (V ∗i /V̂i) + (1−γi). In this case, since R∗i ≥ z∗, (8) implies

that R̂i−z∗ ≥ (V ∗i /V̂i)
γi (R∗i −z∗) and arranging the terms in this inequality yields V̂ γi

i (R̂i−z∗) ≥
(V ∗i)γi (R∗i − z∗). Therefore, the claim holds for each nest i that satisfies R∗i ≥ z∗.

We consider a nest i that satisfies R∗i < z∗. Since θq is the largest possible price for a product,

the optimal expected revenue in problem (3) does not exceed θq and we obtain z∗ ≤ θq. We

define the solution p̃i = (p̃i1, . . . , p̃in) to problem (7) as p̃ij = θq for all j ∈ N , which is feasible to

this problem. Furthermore, (1) implies that Ri(p̃i) =
∑

j∈N θ
q vij(p̃ij)/

∑
j∈N vij(p̃ij) = θq. Since

R∗i < z∗, we have u∗i = z∗ by the definition of u∗i and we obtain V̂i (R̂i − z∗) = V̂i (R̂i − u∗i) ≥
Vi(p̃i) (Ri(p̃i) − u∗i) = Vi(p̃i) (Ri(p̃i) − z∗) ≥ 0 > V ∗i (R∗i − z∗), where the first inequality uses the

fact that p̃i is a feasible but not necessarily an optimal solution to problem (7), the second inequality

uses the fact that Ri(p̃i) = θq ≥ z∗ and the third inequality uses the fact that R∗i < z∗. Thus, we

have V̂i (R̂i − z∗) ≥ 0 > V ∗i (R∗i − z∗), which implies that V̂ γi
i (R̂i − z∗) ≥ 0 > (V ∗i)γi (R∗i − z∗),

establishing the claim for each nest i that satisfies R∗i < z∗.

The discussion in the previous two paragraphs establishes our claim so that V̂ γi
i (R̂i − z∗) ≥

(V ∗i)γi (R∗i − z∗) for all i ∈M . Adding this inequality over all i ∈M yields
∑

i∈M V̂ γi
i (R̂i − z∗) ≥∑

i∈M (V ∗i)γi (R∗i − z∗). Since (p∗1, . . . , p
∗
m) is an optimal solution to problem (3), we have

z∗ =
∑

i∈M (V ∗i)γiR∗i /(v0 +
∑

i∈M (V ∗i)γi). Arranging the terms in this equality, we obtain v0 z
∗ =∑

i∈M (V ∗i)γi (R∗i −z∗), in which case, it follows that
∑

i∈M V̂ γi
i (R̂i−z∗) ≥

∑
i∈M (V ∗i)γi (R∗i −z∗) =

v0 z
∗. Focusing on the first and last terms in this chain of inequalities and solving for z∗, we

get
∑

i∈M V̂ γi
i R̂i/(v0 +

∑
i∈M V̂ γi

i) ≥ z∗. Noting the definitions of R̂i and V̂i, we write the last

inequality as
∑

i∈M Vi(p̂i)
γi Ri(p̂i)/(v0 +

∑
i∈M Vi(p̂i)

γi) ≥ z∗, which implies that the objective

11

value provided by the solution (p̂1, . . . , p̂m) for problem (3) is at least as large as the optimal

objective value. Furthermore, since p̂i is an optimal solution to problem (7) for all i ∈M , we have

p̂i ∈ Fi for all i ∈ M , so that the solution (p̂1, . . . , p̂m) is feasible to problem (3). Thus, it follows

that (p̂1, . . . , p̂m) is an optimal solution to problem (3). �

The critical feature of problem (7) is that we do not have the exponent γi in the term Vi(pi). This

feature ensures that the objective function of problem (7) is separable by the products. In

particular, using the definitions of Vi(pi) and Ri(pi), the objective function of problem (7) is∑
j∈N vij(pij)

[∑
j∈N pij vij(pij)∑
j∈N vij(pij)

− u∗i
]
, which is equivalent to

∑
j∈N (pij − u∗i) vij(pij). We observe

that the last objective function is separable by the products. The fact that the objective function

of problem (7) is separable by the products becomes quite important when constructing a collection

of candidate price vectors. Gallego and Topaloglu (2014) use a result similar to Theorem 2 for an

assortment problem, but they exploit the fact that they can offer no products in a particular nest,

which implies that zero is a trivial lower bound on the optimal objective value of the analogue of

problem (7) in their setting. In our pricing problem, since the set of offered products is fixed, it is

not immediately clear that zero is a lower bound on the optimal objective value of problem (7). We

proceed to using Theorem 2 to construct a collection of candidate price vectors for each nest.

By Theorem 2, we can recover an optimal solution to problem (3) by solving problem (7) for

all i ∈M . Thus, if we let p̂i be an optimal solution to problem (7) and use the singleton Pi = {p̂i}
as the collection of candidate price vectors to charge in nest i, then we can stitch together an

optimal solution to problem (3) by picking one price vector from each one of the collections

P1, . . . ,Pm. However, this approach is not immediately useful for constructing a collection of

candidate price vectors, since solving problem (7) requires the knowledge of u∗i , which, in turn,

requires the knowledge of an optimal solution to problem (3). To get around this difficulty, as a

function of ui ∈ <+, we use p̂i(ui) to denote an optimal solution to the problem

max
pi∈Fi

{
Vi(pi) (Ri(pi)− ui)

}
. (9)

In this case, we observe that if we use the collection of price vectors Pi = {p̂i(ui) : ui ∈ <+}
as the collection of candidate price vectors for nest i, then we can stitch together an optimal

solution to problem (3) by picking one price vector from each one of the collections P1, . . . ,Pm. To

see this result, letting u∗i be as defined in Theorem 2, we note that p̂i(u
∗
i) ∈ {p̂i(ui) : ui ∈ <+}

for all i ∈ M . Furthermore, since problem (9) with ui = u∗i is identical to problem (7), by

Theorem 2, the solution (p̂1(u∗1), . . . , p̂m(u∗m)) is optimal to problem (3). Therefore, for each nest i,

the solution (p̂1(u∗1), . . . , p̂m(u∗m)) uses one price vector from the collection of candidate price vectors

Pi = {p̂i(ui) : ui ∈ <+} and this solution is optimal to problem (3).

We propose using {p̂i(ui) : ui ∈ <+} as the collection of candidate price vectors for nest i, which

is the collection of optimal solutions to problem (9) for any value of ui ∈ <+. In the subsequent

sections, we show that the collection {p̂i(ui) : ui ∈ <+} includes a reasonably small number of price

vectors and we can find these price vectors in a tractable fashion.

12

1.4 Counting Candidate Price Vectors

In this section, we show that there exists a collection of price vectors Pi such that this collection

includes an optimal solution to problem (9) for any value of ui ∈ <+ and there are at most nq

price vectors in this collection, where n is the number of products in a nest and q is the number of

possible price levels. The simple form of the objective function of problem (9) plays an important

role in this result. Using the definitions of Vi(pi) and Ri(pi), we write problem (9) as

max
pi∈Fi

{∑
j∈N

vij(pij)
[∑

j∈N pij vij(pij)∑
j∈N vij(pij)

− ui
]}

= max
pi∈Fi

{∑
j∈N

(pij − ui) vij(pij)

}
. (10)

In the next lemma, we begin by showing that as the value of ui in problem (10) becomes larger,

the optimal price for each product either does not change or becomes larger.

Lemma 3 Using p̂i(ui) = (p̂i1(ui), . . . , p̂in(ui)) to denote an optimal solution to problem (10) as a

function of ui, if we have u−i < u+
i , then it holds that p̂ij(u

−
i) ≤ p̂ij(u+

i) for all j ∈ N .

Proof. To get a contradiction, assume that u−i < u+
i but we have p̂ij(u

−
i) > p̂ij(u

+
i) for some

j ∈ N . For notational brevity, we let p̂−i = p̂i(u
−
i) and p̂+

i = p̂i(u
+
i). Since the solutions p̂−i and

p̂+
i are optimal to problem (10) when this problem is solved at particular values of ui, we have

p̂−i ∈ Fi and p̂+
i ∈ Fi, which is to say that p̂−i1 ≤ p̂−i2 ≤ . . . ≤ p̂−in and p̂+

i1 ≤ p̂+
i2 ≤ . . . ≤ p̂+

in. We let

J = {j ∈ N : p̂−ij > p̂+
ij}, which in nonempty by the assumption that p̂−ij > p̂+

ij for some j ∈ N .

We define the solution p̃i = (p̃i1, . . . , p̃in) to problem (10) as p̃ij = p̂−ij ∨ p̂+
ij for all j ∈ N ,

where we use a ∨ b = max{a, b}. If f(j) and g(j) are both increasing functions of j ∈ N , then

f(j) ∨ g(j) is also an increasing function of j ∈ N . By the discussion at the end of the previous

paragraph, p̂−ij and p̂+
ij are both increasing functions of j ∈ N . Thus, p̃ij = p̂−ij ∨ p̂+

ij is also an

increasing function of j ∈ N , which implies that p̃i1 ≤ p̃i2 ≤ . . . ≤ p̃in. Therefore, we have p̃i ∈ Fi,
indicating that p̃i is a feasible solution to problem (10). In this case, since p̂+

i is an optimal solution

to problem (10) when we solve this problem with ui = u+
i , we have

∑
j∈N (p̂+

ij − u+
i) vij(p̂

+
ij) ≥∑

j∈N (p̃ij − u+
i) vij(p̃ij). By the definitions of J and p̃i, we have p̃ij = p̂−ij for all j ∈ J and

p̃ij = p̂+
ij for all j 6∈ J . Thus, the last inequality can be written as

∑
j∈N (p̂+

ij − u+
i) vij(p̂

+
ij) ≥∑

j∈J (p̂−ij − u
+
i) vij(p̂

−
ij) +

∑
j 6∈J(p̂+

ij − u
+
i) vij(p̂

+
ij), in which case, canceling the common terms on

the two sides of the inequality, we have
∑

j∈J(p̂+
ij − u

+
i) vij(p̂

+
ij) ≥

∑
j∈J(p̂−ij − u

+
i) vij(p̂

−
ij).

We define the solution p̄i = (p̄i1, . . . , p̄in) to problem (10) as p̄ij = p̂+
ij ∧ p̂

−
ij for all j ∈ N , where

we use a ∧ b = min{a, b}. We note that if f(j) and g(j) are both increasing functions of j ∈ N ,

then f(j) ∧ g(j) is also an increasing function of j ∈ N . In this case, using the same approach

in the previous paragraph, we can show that p̄i ∈ Fi. Thus, since p̂−i is an optimal solution

to problem (10) when we solve this problem with ui = u−i , we have
∑

j∈N (p̂−ij − u−i) vij(p̂
−
ij) ≥∑

j∈N (p̄ij − u−i) vij(p̄ij). Noting the definitions of J and p̄i, the last inequality can equivalently be

written as
∑

j∈N (p̂−ij−u
−
i) vij(p̂

−
ij) ≥

∑
j∈J(p̂+

ij−u
−
i) vij(p̂

+
ij)+

∑
j 6∈J(p̂−ij−u

−
i) vij(p̂

−
ij), in which case,

13

canceling the common terms on the two sides of the inequality yields
∑

j∈J(p̂−ij − u
−
i) vij(p̂

−
ij) ≥∑

j∈J(p̂+
ij − u−i) vij(p̂

+
ij). From the previous paragraph, we also have

∑
j∈J(p̂+

ij − u+
i) vij(p̂

+
ij) ≥∑

j∈J(p̂−ij − u
+
i) vij(p̂

−
ij). Adding the last two inequalities and canceling the common terms yield

u−i
∑

j∈J(vij(p̂
+
ij)− vij(p̂

−
ij)) ≥ u

+
i

∑
j∈J(vij(p̂

+
ij)− vij(p̂

−
ij)).

By the definition of J , we have p̂−ij > p̂+
ij for all j ∈ J . Noting that the preference weight of a

product gets larger as we charge a smaller price for the product, we have vij(p̂
−
ij) < vij(p̂

+
ij) for all

j ∈ J . Thus, we have
∑

j∈J(vij(p̂
+
ij)− vij(p̂

−
ij)) > 0, in which case, by the inequality at the end of

the previous paragraph, we obtain u−i ≥ u
+
i , which is a contradiction. �

The last step in the proof of Lemma 3 critically depends on the assumption that vij(pij) is a

decreasing function of pij . Also, we note that Lemma 3 holds even when there are multiple optimal

solutions to problem (10) and we choose p̂i(ui) as any one of these solutions. In the next theorem,

we use Lemma 3 to show that there exists a collection of at most nq price vectors such that this

collection includes an optimal solution to problem (10) for any value of ui ∈ <+. The intuition

behind this result is that if we increase the value of ui in problem (10), then by Lemma 3, the

price of a product in an optimal solution either does not change or becomes larger. Since there are

q possible prices for a product, the price of a product will no longer change after a small number

of price changes. We are not aware of a similar result in the earlier literature and this result allows

us to use a small collection of candidate price vectors under price ladders inside nests.

Theorem 4 There exists a collection of at most nq price vectors such that this collection includes

an optimal solution to problem (10) for any value of ui ∈ <+.

Proof. Assume that there are K distinct values of ui ∈ <+ such that if we solve problem (10) with

each one of these values, then we obtain a distinct optimal solution. We use {ûki : k = 1, . . . ,K} to

denote these values of ui ∈ <+ and use p̂ki to denote an optimal solution to problem (10) when we

solve this problem with ui = ûki . By our assumption, none of the price vectors in {p̂ki : k = 1, . . . ,K}
are equal to each other. To get a contradiction, assume that K > nq. Without loss of generality,

we index the values {ûki : k = 1, . . . ,K} such that û1
i < û2

i < . . . < ûKi , in which case, Lemma 3

implies that p̂1
ij ≤ p̂2

ij ≤ . . . ≤ p̂Kij for all j ∈ N . Since the price vectors {p̂ki : k = 1, . . . ,K} are

distinct, using 1(·) to denote the indicator function, we have
∑

j∈N 1(p̂kij < p̂k+1
ij) > 1, indicating

that there is at least one different price in the price vectors p̂ki and p̂k+1
i . Adding the last inequality

over all k = 1, . . . ,K−1 and noting that K > nq, we obtain
∑

j∈N
∑K−1

k=1 1(p̂kij < p̂k+1
ij) > K−1 ≥

nq. Focusing on the first and last terms in the last chain of inequalities, since |N | = n, it must

be the case that
∑K−1

k=1 1(p̂kij < p̂k+1
ij) > q for some j ∈ N , which implies that more than q of the

inequalities p̂1
ij ≤ p̂2

ij ≤ . . . ≤ p̂Kij are strict, but since there are q possible values for the price of a

product, more than q of these inequalities cannot be strict and we obtain a contradiction. �

Thus, there exists a reasonably small collection of price vectors that includes an optimal solution

to problem (10) for any ui ∈ <+. In the next section, we show how to construct this collection.

14

1.5 Constructing Candidate Price Vectors

In the previous section, we show that there exists a collection of price vectors with at most nq price

vectors in it such that this collection includes an optimal solution to problem (10) for any value of

ui ∈ <+. In this section, we show how to come up with this collection in a tractable fashion. In

problem (10), if we charge the price pij for product j in nest i, then we obtain a contribution of

(pij − ui) vij(pij). By the constraint pi ∈ Fi, the price charged for product j should be at least

as large as the price charged for product j − 1. Problem (10) finds the prices to charge for the

products in nest i to maximize the total contribution. So, we can solve problem (10) by using a

dynamic program. The decision epochs are the products in nest i. When making the decision for

product j in nest i, the state variable is the price for product j − 1. Thus, for a fixed value of

ui ∈ <+, we can solve problem (10) by using the dynamic program

Φij(pi,j−1 |ui) = max
pij ∈ Θ :

pij ≥ pi,j−1

{
(pij − ui) vij(pij) + Φi,j+1(pij |ui)

}
, (11)

with the boundary condition that Φi,n+1(· |ui) = 0. The optimal objective value of problem (10)

is given by Φi1(θ1 |ui), where the value functions {Φij(pi,j−1 |ui) : pi,j−1 ∈ Θ, j ∈ N} are obtained

through the dynamic program in (11). By Theorem 4, there are most nq solutions from the dynamic

program in (11) such that the solution from this dynamic program for any value of ui ∈ <+ is one

of these nq solutions. The question is how to come up with these solutions.

To answer this question, we use the linear programming formulation of the dynamic program

in (11). Dynamic programs with finite state and action spaces have equivalent linear programming

formulations; see Puterman (1994). In these linear programs, there is one decision variable for each

state and decision epoch and there is one constraint for each state, action and decision epoch. The

linear program corresponding to the dynamic program in (11) is given by

min φi1(θ1) (12)

s.t. φij(pi,j−1) ≥ (pij − ui) vij(pij) + φi,j+1(pij) ∀ pi,j−1 ∈ Θ, pij ∈ L(pi,j−1), j ∈ N,

where the decision variables are {φij(pi,j−1) : pi,j−1 ∈ Θ, j ∈ N} and we follow the convention that

φi,n+1(pin) = 0 for all pin ∈ Θ. The set L(pi,j−1) is the set of feasible prices for product j given

that the price for product j−1 is pi,j−1, which is given by L(pi,j−1) = {pij ∈ Θ : pij ≥ pi,j−1}. If we

solve the linear program in (12), then the optimal value of the decision variable φi1(θ1) is equal to

Φi1(θ1 |ui) obtained through the dynamic program in (11), which is, in turn, equal to the optimal

objective value of problem (10). The critical observation is that the value of ui ∈ <+ only affects

the right hand side coefficients of the constraints in problem (12). Therefore, we can vary ui ∈ <+

parametrically and solve problem (12) by using the parametric simplex method to generate the

possible optimal solutions to this problem for all values of ui ∈ <+. These solutions provide the

solutions to the dynamic program in (11) for all values of ui ∈ <+.

Since there are q possible prices for a product and there are n products in a nest, the linear

program in (12) has O(nq) decision variables and O(nq2) constraints. Putting all of the discussion so

15

far together, we solve problem (12) by using the parametric simplex method to generate the optimal

solutions to this problem for all values of ui ∈ <+. These solutions correspond to the optimal

solutions to problem (10) for all values of ui ∈ <+. By the discussion that follows Theorem 2, we

can use the optimal solutions to problem (10) for all values of ui ∈ <+ as the collection of candidate

price vectors Pi for nest i. Once we have the collection of candidate price vectors for each nest, we

can solve the linear program in (6) to obtain the value of ẑ that satisfies v0 ẑ = f(ẑ). Since there

are at most nq price vectors in each one of the collections P1, . . . ,Pm, there are O(m) decision

variables and O(mnq) constraints in the linear program in (6). In this case, by Theorem 1, we can

solve problem (5) for all i ∈M to obtain an optimal solution to problem (3).

To our knowledge, using a dynamic program to construct the collection of candidate solutions in

each nest does not appear in the earlier literature. In Section 4, we provide numerical experiments,

where the largest problem instances have 180 products and 30 possible prices for each product. We

can obtain an optimal solution to problem (3) in a fraction of a second.

2 Price Ladders Between Nests

In this section, we consider the case with price ladders between nests. In this setting, there is an

intrinsic ordering between the qualities of the nests and the prices charged in a nest corresponding

to a higher quality level should also be larger. There is no intrinsic ordering between the qualities

or the prices of the products in the same nest.

2.1 Problem Formulation

Our problem formulation is similar to the one in Section 1.1. There are m nests indexed by

M = {1, . . . ,m}. In each nest, there are n products indexed by N = {1, . . . , n}. For each product,

there are q possible prices given by Θ = {θ1, . . . , θq}. The possible prices for a product are indexed

such that 0 < θ1 < θ2 < . . . < θq. We use pij ∈ Θ to denote the price that we charge for product

j in nest i. If we charge the price pij for product j in nest i, then the preference weight of this

product is given by vij(pij). If we charge a larger price for a product, then its preference weight

becomes smaller, implying that vij(θ
1) > vij(θ

2) > . . . > vij(θ
q) > 0. Customers follow the same

choice process described in Section 1.1. Thus, if we use pi = (pi1, . . . , pin) ∈ Θn to denote the price

vector charged in nest i, then the expected revenue obtained from a customer that has already

decided to make a purchase in nest i is given by Ri(pi), where Ri(pi) is as in (1). If we charge

the price vectors (p1, . . . , pm) ∈ Θm×n over all nests, then the expected revenue obtained from a

customer is given by Π(p1, . . . , pm), where Π(p1, . . . , pm) is as in (2).

Our goal is to find the price vectors (p1, . . . , pm) to maximize the expected revenue Π(p1, . . . , pm)

subject to the constraint that the price vectors charged in the different nests are consistent with

the quality level that each nest represents. In other words, if nest i corresponds to a higher quality

level than nest l, then the prices of the products in nest i should be larger than the prices of

16

the products in nest l. This constraint can be interpreted as a price ladder constraint between

nests. To formulate the price ladder constraint, without loss of generality, we index the nests

such that a nest with a larger index represents a higher quality level. In other words, the nests

M = {1, . . . ,m} are indexed in the order of increasing quality levels. Thus, the price ladder

constraint ensures that the price vectors (p1, . . . , pm) charged over all nests satisfy maxj∈N p1j ≤
minj∈N p2j , maxj∈N p2j ≤ minj∈N p3j , . . . ,maxj∈N pm−1,j ≤ minj∈N pmj . As a function of the

price vector pi−1 charged in nest i − 1, the set of feasible price vectors in nest i is Gi(pi−1) =

{pi ∈ Θn : minj∈N pij ≥ maxj∈N pi−1,j}. We want to find the price vectors to charge over all nests

to maximize the expected revenue from a customer, yielding the problem

z∗ = max
(p1, . . . , pm) ∈ Θm×n :

pi ∈ Gi(pi−1) ∀ i ∈M \ {1}

{
Π(p1, . . . , pm)

}
. (13)

Problem (13) is significantly more difficult than problem (3) since the constraints link the price

vectors charged in different nests. The broad outline of our approach for problem (13) is similar to

the one for problem (3). We relate problem (13) to the problem of computing the fixed point of a

function. Assuming that we have a collection of candidate price vectors for each nest such that we

can stitch together an optimal solution to problem (13) by picking one price vector from each one

of the collections, we show how to obtain an optimal solution to problem (13). Finally, we show

how to come up with the collections of candidate price vectors. Although the broad outline of our

approach for problem (13) is similar to the one for problem (3), the details are quite different as

problem (13) is significantly more difficult than problem (3).

2.2 Connection to a Fixed Point Representation

Assume that we have a collection of candidate price vectors Pi = {pti : t ∈ Ti} for each nest i such

that we can stitch together an optimal solution to problem (13) by picking one price vector from

each one of the collections P1, . . . ,Pm. In other words, there exists an optimal solution (p∗1, . . . , p
∗
m)

to problem (13) such that p∗i ∈ Pi for all i ∈ M . The question is how we can pick a price vector

p∗i from the collection Pi for each nest i such that the solution (p∗1, . . . , p
∗
m) is indeed optimal to

problem (13). To answer this question, for any z ∈ <+, we define g(z) as

g(z) = max
(p1, . . . , pm) ∈ P1 × . . .× Pm :
pi ∈ Gi(pi−1) ∀ i ∈M \ {1}

{∑
i∈M

Vi(pi)
γi (Ri(pi)− z)

}
. (14)

Since v0 z is increasing and g(z) is decreasing in z with g(0) ≥ 0, there exists a value of ẑ that

satisfies v0 ẑ = g(ẑ), which corresponds to the fixed point of the function g(·)/v0. In the next

theorem, we show that the value of ẑ that satisfies v0 ẑ = g(ẑ) can be used to construct an optimal

solution to problem (13). The proof of this theorem follows from an outline that is similar to the

proof of Theorem 1 and we omit the proof. In the theorem, we recall that z∗ corresponds to the

optimal objective value of problem (13).

17

Theorem 5 Assume that we have a collection of candidate price vectors Pi for each nest i such

that we can stitch together an optimal solution to problem (13) by picking one price vector from

each one of the collections P1, . . . ,Pm. Let ẑ be such that v0 ẑ = g(ẑ) and (p̂1, . . . , p̂m) be an optimal

solution to problem (14) when we solve this problem with z = ẑ. Then, we have Π(p̂1, . . . , p̂m) ≥ z∗.

Building on Theorem 5, we can obtain an optimal solution to problem (13) as follows. Assume

that we have a collection of candidate price vectors Pi = {pti : t ∈ Ti} for each nest i such that we

can stitch together an optimal solution to problem (13) by picking one price vector from each one

of the collections P1, . . . ,Pm. We find the value of ẑ that satisfies v0 ẑ = g(ẑ). If we let (p̂1, . . . , p̂m)

be an optimal solution to problem (14) when we solve this problem with z = ẑ, then by Theorem

5, we have Π(p̂1, . . . , p̂m) ≥ z∗. Since (p̂1, . . . , p̂m) is a feasible solution to problem (14), we also

have p̂i ∈ Gi(pi−1) for all i ∈ M \ {1}. Thus, the solution (p̂1, . . . , p̂m) is feasible to problem (13)

and provides an objective value for problem (13) that is at least as large as the optimal objective

value of this problem, indicating that (p̂1, . . . , p̂m) is an optimal solution to problem (13).

One important question is how we can find the value of ẑ that satisfies v0 ẑ = g(ẑ). In problem

(14), we observe that if we charge the price vector pi in nest i, then we obtain a contribution of

Vi(pi)
γi (Ri(pi)− z). By the constraints p̂i ∈ Gi(pi−1) for all i ∈M \ {1}, the smallest price charged

in nest i should be at least as large as the largest price charged in nest i − 1. Problem (14) finds

the price vectors to charge for the nests to maximize the total contribution. So, for a fixed value

of z ∈ <+, we can solve problem (14) by using a dynamic program. The decision epochs are the

nests. When making the decision for nest i, the state variable is the largest price charged for the

products in nest i − 1. Thus, for a fixed value of z ∈ <+, we can obtain an optimal solution to

problem (14) by solving the dynamic program

Ψi(wi−1 | z) = max
pi ∈ Pi :

pij ≥ wi−1 ∀ j ∈ N

{
Vi(pi)

γi (Ri(pi)− z) + Ψi+1(maxj∈N pij | z)
}
, (15)

with the boundary condition that Ψm+1(· | z) = 0. The optimal objective value of problem (14)

is given by Ψ1(θ1 | z), where the value functions {Ψi(wi−1 | z) : wi−1 ∈ Θ, i ∈ M} are obtained

through the dynamic program in (15). Since there are q possible prices for a product, we can solve

the dynamic program above in O(q
∑

i∈M |Pi|) operations, which is reasonable when the numbers

of price vectors in the collections P1, . . . ,Pm are not too large. In Section 1.2, we find the value of

ẑ satisfying v0 ẑ = f(ẑ) by using the linear program in (6), but this linear program is not useful

to find the value of ẑ satisfying v0 ẑ = g(ẑ) since problem (14) does not decompose by the nests

due to the constraints pi ∈ Gi(pi−1) for all i ∈ M \ {1}. Instead, we show how we can use the

linear programming formulation of the dynamic program in (15) to find the value of ẑ satisfying

v0 ẑ = g(ẑ). Feldman and Topaloglu (2014) use a dynamic program to find the fixed point of a

function in their assortment problem, but they are motivated by limited capacity availability.

As mentioned in Section 1.5, dynamic programs with finite state and action spaces have

equivalent linear programming formulations. Building on the linear programming formulation

18

corresponding to the dynamic program in (15), we propose finding the value of ẑ that satisfies

v0 ẑ = g(ẑ) by solving the linear program

min ψ1(θ1) (16)

s.t. ψi(wi−1) ≥ Vi(pi)γi (Ri(pi)− z) + ψi+1(maxj∈N pij) ∀wi−1 ∈ Θ, pi ∈Mi(wi−1), i ∈M

v0 z = ψ1(θ1).

In the linear program above, the decision variables are z and ψ = {ψi(wi−1) : wi−1 ∈ Θ, i ∈M}. We

follow the convention that ψm+1(wm) = 0 for all wm ∈ Θ. The set Mi(wi−1) is the set of feasible

price vectors in nest i given that the largest price charged in nest i−1 is wi−1. In particular, the set

Mi(wi−1) is given byMi(wi−1) = {pi ∈ Pi : pij ≥ wi−1 ∀ j ∈ N}. If we drop the second constraint

in problem (16) and solve this problem for a fixed value of z ∈ <+, then this problem corresponds

to the linear programming formulation for the dynamic program in (15). Therefore, the optimal

value of the decision variable ψ1(θ1) would correspond to Ψ1(θ1 | z) obtained through the dynamic

program in (15), which is equal to the optimal objective value of problem (14) for a fixed value of

z. On the other hand, it turns out that if we solve problem (16) as formulated, then the optimal

value of the decision variable z corresponds to the value of ẑ that satisfies v0 ẑ = g(ẑ). We show

this result in the next theorem.

Theorem 6 Using (ẑ, ψ̂) to denote an optimal solution to problem (16), we have v0 ẑ = g(ẑ).

Proof. Let z̃ satisfy v0 z̃ = g(z̃). We want to show that z̃ = ẑ. We solve the dynamic program in

(15) with z = z̃ to obtain the value functions Ψ(z̃) = {Ψi(wi−1 | z̃) : wi−1 ∈ Θ, i ∈M}. Due to the

way these value functions are computed in the dynamic program in (15), we have Ψi(wi−1 | z̃) ≥
Vi(pi)

γi (Ri(pi) − z̃) + Ψi+1(maxj∈N pij | z̃) for all wi−1 ∈ Θ, pi ∈ M(wi−1) and i ∈ M . Thus,

the solution (ẑ,Ψ(ẑ)) satisfies the first set of constraints in problem (16). By the discussion that

follows the dynamic program in (15), Ψ1(θ1 | z̃) provides the optimal objective value of problem

(14) when we solve this problem with z = z̃, yielding Ψ1(θ1 | z̃) = g(z̃) = v0 z̃. Thus, the solution

(ẑ,Ψ(ẑ)) satisfies the second constraint in problem (16) as well. Since the solution (ẑ,Ψ(ẑ)) is

feasible to problem (16), the objective value provided by this solution is at least as large as the

optimal objective value, yielding Ψ1(θ1 | z̃) ≥ ψ̂1(θ1). Thus, we obtain v0 z̃ = g(z̃) = Ψ1(θ1 | z̃) ≥
ψ̂1(θ1) = v0 ẑ, where the last equality holds since (ẑ, ψ̂) is a feasible solution to problem (16).

The last chain of inequalities in the previous paragraph shows that z̃ ≥ ẑ. To show that z̃ = ẑ,

we solve problem (14) with z = ẑ to obtain an optimal solution (p̂1, . . . , p̂m). Therefore, we have

g(ẑ) =
∑

i∈M Vi(p̂i)
γi (Ri(p̂i) − ẑ). For all i ∈ M , we let ŵi = maxj∈N p̂ij with the convention

that ŵ0 = θ1. Since the solution (p̂1, . . . , p̂m) is feasible to problem (14), we have p̂i ∈ Gi(p̂i−1)

for all i ∈ M \ {1} and p̂i ∈ Pi for all i ∈ M , which is equivalent to having p̂i ∈ M(ŵi−1) for all

i ∈ M . In this case, using the fact that the solution (ẑ, ψ̂) is feasible to problem (16), we have

ψ̂i(ŵi−1) ≥ Vi(p̂i)
γi (Ri(p̂i)− ẑ) + ψ̂i+1(ŵi) for all i ∈M . Adding these inequalities over all i ∈M

19

and noting that ŵ0 = θ1, we obtain ψ̂1(θ1) ≥
∑

i∈M Vi(p̂i)
γi (Ri(p̂i) − ẑ) = g(ẑ), where the last

equality uses the definition of (p̂1, . . . , p̂m). This chain of inequalities shows that ψ̂1(θ1) ≥ g(ẑ). As

mentioned at the beginning of this paragraph, we have z̃ ≥ ẑ. Noting that g(z) is decreasing in z,

we obtain g(ẑ) ≥ g(z̃). In this case, we have ψ̂1(θ1) ≥ g(ẑ) ≥ g(z̃) = v0 z̃ ≥ v0 ẑ = ψ̂1(θ1), where

the first equality uses the definition of z̃, the third inequality is by the fact that z̃ ≥ ẑ and the

second equality uses the fact that the solution (ẑ, ψ̂) is feasible to problem (16) so that it satisfies

the second constraint in this problem. Thus, all of the inequalities in the last chain of inequalities

hold as equality and we obtain g(ẑ) = g(z̃) = v0 z̃ = v0 ẑ, establishing that z̃ = ẑ. �

By Theorem 6, we can solve problem (16) to find the value of ẑ that satisfies v0 ẑ = g(ẑ). Problem

(16) is a linear program with O(mq) decision variables and
∑

i∈M O(q|Pi|) constraints, which is

tractable as long as the numbers of price vectors in the collections P1, . . . ,Pm are reasonably

small. In the rest of our discussion, we focus on how to construct a reasonably small collection of

candidate price vectors Pi for each nest i such that we can stitch together an optimal solution to

problem (13) by picking one price vector from each one of the collections P1, . . . ,Pm. Once we

have these collections, we can solve problem (16) to find ẑ satisfying v0 ẑ = g(ẑ) and we can use

Theorem 5 to obtain an optimal solution to problem (13).

2.3 Characterizing Candidate Price Vectors

In this section, we give a characterization of the optimal price vector to charge in each nest. This

characterization ultimately becomes useful to construct a collection of candidate price vectors Pi
for each nest i such that we can stitch together an optimal solution to problem (13) by picking

one price vector from each one of the collections P1, . . . ,Pm. In the next theorem, we give our

characterization of the optimal price vector to charge in each nest. This theorem is analogous to

Theorem 2, but its proof is substantially more involved due to the constraints in problem (13) that

link the price vectors charged in different nests. We defer the proof to the appendix.

Theorem 7 Let (p∗1, . . . , p
∗
m) be an optimal solution to problem (13) providing the objective value

z∗ and set u∗i = max{γi z∗ + (1− γi)Ri(p∗i), z∗}, `∗i = minj∈N p
∗
ij and w

∗
i = maxj∈N p

∗
ij. If p̂i is an

optimal solution to the problem

max
pi ∈ Θ :

`∗i ≤ pij ≤ w∗i ∀ j ∈ N

{
Vi(pi) (Ri(pi)− u∗i)

}
, (17)

then (p̂1, . . . , p̂m) is an optimal solution to problem (13).

By the same discussion that follows Theorem 2, the objective function of problem (17) is

separable by the products, which becomes important when constructing our candidate price

vectors. By Theorem 7, we can recover an optimal solution to problem (13) by solving problem (17)

for all i ∈ M . Therefore, if we let p̂i be an optimal solution to problem (17) and use Pi = {p̂i} as

20

the collection of candidate price vectors to charge in nest i, then we can stitch together an optimal

solution to problem (13) by picking one price vector from each one of the collections P1, . . . ,Pm. This

approach is not immediately useful for constructing a collection of candidate price vectors, since

solving problem (17) requires the knowledge of u∗i , `
∗
i and w∗i , all of which, in turn, require the

knowledge of an optimal solution to problem (13). To deal with this difficulty, as a function of

ui ∈ <+, `i ∈ Θ and wi ∈ Θ, we use p̂i(ui, `i, wi) to denote an optimal solution to the problem

max
pi ∈ Θ :

`i ≤ pij ≤ wi ∀ j ∈ N

{
Vi(pi) (Ri(pi)− ui)

}
. (18)

In this case, if we use the collection Pi = {p̂i(ui, `i, wi) : ui ∈ <+, `i ∈ Θ, wi ∈ Θ} as the

collection of candidate price vectors for nest i, then we can stitch together an optimal solution

to problem (13) by picking one price vector from each one of the collections P1, . . . ,Pm. To

see this result, letting u∗i , `∗i and w∗i be as defined in Theorem 7, we have p̂i(u
∗
i , `
∗
i , w

∗
i) ∈

{p̂i(ui, `i, wi) : ui ∈ <+, `i ∈ Θ, wi ∈ Θ} for all i ∈ M . Furthermore, since problem (18) with

ui = u∗i , `i = `∗i and wi = w∗i is identical to problem (17), Theorem 7 implies that

(p̂1(u∗1, `
∗
1, w

∗
1), . . . , p̂m(u∗m, `

∗
m, w

∗
m)) is an optimal solution to problem (13). Therefore, if we use

the collection Pi = {p̂i(ui, `i, wi) : ui ∈ <+, `i ∈ Θ, wi ∈ Θ} as the collection of candidate price

vectors for nest i, then we can stitch together an optimal solution to problem (13) by picking one

price vector from each one of the collections P1, . . . ,Pm.

Noting the discussion above, we can use {p̂i(ui, `i, wi) : ui ∈ <+, `i ∈ Θ, wi ∈ Θ} as the

collection of candidate price vectors to charge in nest i. In the subsequent sections, we show

that for a given `i ∈ Θ and wi ∈ Θ, the collection {p̂i(ui, `i, wi) : ui ∈ <+} includes at most nq

price vectors and we can find these price vectors in a tractable fashion. Therefore, since there

are q possible values for each of `i and wi, the collection {p̂i(ui, `i, wi) : ui ∈ <+, `i ∈ Θ, wi ∈ Θ}
includes at most nq3 price vectors.

2.4 Counting Candidate Price Vectors

In this section, we consider problem (18) for fixed values of `i ∈ Θ and wi ∈ Θ. We show that there

exists a collection of price vectors Pi = {pti : t ∈ Ti} such that this collection includes an optimal

solution to problem (18) for any value of ui ∈ <+ and there are at most nq price vectors in this

collection. To show this result, we write problem (18) as

max
pi ∈ Θ :

`i ≤ pij ≤ wi ∀j ∈ N

{∑
j∈N

vij(pij)
[∑

j∈N pij vij(pij)∑
j∈N vij(pij)

− ui
]}

= max
pi ∈ Θ :

`i ≤ pij ≤ wi ∀j ∈ N

{∑
j∈N

(pij − ui) vij(pij)

}
.

(19)

In the next lemma, we begin by showing that as the value of ui in problem (19) becomes larger,

the optimal price for each product either does not change or becomes larger. This lemma is similar

to Lemma 3 but its proof is significantly simpler than that of Lemma 3 since the prices in problem

(19) have only upper and lower bound constraints, rather than a price ladder constraint.

21

Lemma 8 Using p̂i(ui) = (p̂i1(ui), . . . , p̂in(ui)) to denote an optimal solution to problem (19) as a

function of ui, if we have u−i < u+
i , then it holds that p̂ij(u

−
i) ≤ p̂ij(u+

i) for all j ∈ N .

Proof. To get a contradiction, assume that u−i < u+
i , but we have p̂ij(u

−
i) > p̂ij(u

+
i) for some

j ∈ N . For notational brevity, we let p̂−i = p̂i(u
−
i) and p̂+

i = p̂i(u
+
i). Noting that p̂−ij > p̂+

ij and

using the fact that the preference weight of a product gets larger as we charge a smaller price for

the product, we obtain vij(p̂
−
ij) < vij(p̂

+
ij). In problem (19), if we charge the price pij for product j,

then this product makes a contribution of (pij −ui) vij(pij) to the objective function. We note that

p̂+
i is an optimal solution to problem (19) when we solve this problem with ui = u+

i . Therefore,

if we solve problem (19) with ui = u+
i , then the contribution of product j when we charge the

price p+
ij for this product should be at least as large as the contribution when we charge the price

p−ij . Otherwise, it would not be optimal to charge the price p+
ij for product j when we solve problem

(19) with ui = u+
i . Thus, we obtain (p+

ij − u
+
i) vij(p

+
ij) ≥ (p−ij − u

+
i) vij(p

−
ij). Similarly, p̂−i is an

optimal solution to problem (19) when we solve this problem with ui = u−i . Therefore, following an

argument similar to the preceding one, it holds that (p−ij−u
−
i) vij(p

−
ij) ≥ (p+

ij−u
−
i) vij(p

+
ij). Adding

the last two inequalities and canceling the common terms, we obtain u−i (vij(p̂
+
ij) − vij(p̂

−
ij)) ≥

u+
i (vij(p̂

+
ij) − vij(p̂

−
ij)). Noting that vij(p̂

−
ij) < vij(p̂

+
ij) by the discussion at the beginning of the

proof, the last inequality implies that u−i ≥ u
+
i , which is a contradiction. �

We are not aware of a result similar to Lemma 8 in the earlier literature. In the next theorem,

we use the lemma above to show that there exists a collection of at most nq price vectors such that

this collection includes an optimal solution to problem (19) for any value of ui ∈ <+. The proof of

this theorem is identical to that of Theorem 4, except that it uses Lemma 8. We omit the proof.

Theorem 9 There exists a collection of at most nq price vectors such that this collection includes

an optimal solution to problem (19) for any value of ui ∈ <+.

By Theorem 9, for fixed values of `i ∈ Θ and wi ∈ Θ, there exists a collection of at most nq

price vectors such that this collection includes an optimal solution to problem (19) for any value of

ui ∈ <+. In the next section, we show how to construct this collection. Since there are q possible

values for each of `i and wi, repeating our approach for all possible values of `i and wi, it follows

that there exists a collection of at most nq3 price vectors such that this collection includes an

optimal solution to problem (19) for any value of ui ∈ <+, `i ∈ Θ and wi ∈ Θ.

2.5 Constructing Candidate Price Vectors

In the previous section, we consider problem (19) for fixed values of `i ∈ Θ and wi ∈ Θ. We

show that there exists a collection of at most nq price vectors such that this collection includes

an optimal solution to problem (19) for any value of ui ∈ <+. In this section, we show how to

come up with this collection in a tractable fashion. Our approach builds on a linear programming

22

formulation of problem (19). To give this linear programming formulation, we use the decision

variables {xij(pij) : pij ∈ Θ, j ∈ N}, where xij(pij) = 1 if we charge price pij for product j in nest

i, otherwise xij(pij) = 0. In this case, problem (19) can be written as

max
∑
j∈N

∑
pij∈Θ

(pij − ui) vij(pij)xij(pij) (20)

s.t.
∑
pij∈Θ

xij(pij) = 1 ∀ j ∈ N

xij(pij) = 0 ∀ pij 6∈ {`i, . . . , wi}, j ∈ N

xij(pij) ∈ {0, 1} ∀ pij ∈ Θ, j ∈ N.

In the problem above, the first set of constraints ensures that we choose one price for each

product, whereas the second set of constraints ensures that the price of each product is between

`i and wi. Using the second set of constraints, we can set the values of the decision variables

{xij(pij) : pij 6∈ {`i, . . . , wi}, j ∈ N} to zero and drop these decision variables from problem

(20). On the other hand, each row of the constraint matrix corresponding to the first set of

constraints includes consecutive ones. Such a matrix is called an interval matrix and interval

matrices are totally unimodular; see Nemhauser and Wolsey (1988). Therefore, we can obtain an

optimal solution to problem (20) by solving its linear programming relaxation. Also, we observe

that the value of ui ∈ <+ only affects the objective function coefficients in problem (20). Thus, we

can vary ui ∈ <+ parametrically and solve problem (20) by using the parametric simplex method to

generate the optimal solutions to this problem for all values of ui ∈ <+. These solutions correspond

to the optimal solutions to problem (19) for all values of ui ∈ <+.

Therefore, for fixed values of `i ∈ Θ and wi ∈ Θ, we solve problem (20) by using the

parametric simplex method to generate the optimal solutions to this problem for all values of

ui ∈ <+. Repeating this approach for all possible values of `i and wi, we obtain the optimal

solutions to problem (20) for all values of ui ∈ <+, `i ∈ Θ and wi ∈ Θ. By the discussion that

follows Theorem 7, we can use the optimal solutions to problem (20) for all values of ui ∈ <+,

`i ∈ Θ and wi ∈ Θ as the collection of candidate price vectors Pi in nest i. Once we have the

collection of candidate price vectors in each nest, we can solve the linear program in (16) to find

the value of ẑ that satisfies v0 ẑ = g(ẑ). Since there are at most nq3 price vectors in each one of

the collections P1, . . . ,Pm, we have |M(wi−1)| = O(nq3), which implies that the linear program in

(16) has O(mq) decision variables and O(mnq4) constraints. In this case, by Theorem 5, we can

solve problem (14) with z = ẑ to obtain an optimal solution to problem (13). To solve problem

(14) with z = ẑ, we can simply solve the dynamic program in (15) with z = ẑ.

3 Extensions

In this section, we give extensions to other types of quality consistency constraints and develop an

approximation when the product prices lie on a continuum. For brevity of the presentation, we

mainly point out how our earlier analysis needs to change to facilitate these extensions.

23

3.1 Joint Price Ladders Inside and Between Nests

In this section, we extend our results to the case where there are price ladders both inside

and between nests. We index the nests by M = {1, . . . ,m} and the products in each nest by

N = {1, . . . , n}. Without loss of generality, both the nests and the products in each nest are

indexed in the order of increasing quality. In other words, we index the nests such that a

nest with a larger index represents a higher quality level. Similarly, we index the products in

each nest such that a product with a larger index is of higher quality. The quality consistency

constraint ensures two conditions. First, the prices charged for the products in a nest follow the

ordering of the qualities of the products. Second, the price charged for any product in a nest

that represents a higher quality level is larger than the price charged for any product in a nest

that represents a lower quality level. Therefore, the quality consistency constraint ensures that

p11 ≤ p12 ≤ . . . ≤ p1n ≤ p21 ≤ p22 ≤ . . . ≤ p2n ≤ . . . ≤ pm1 ≤ pm2 ≤ . . . ≤ pmn. Noting

the definitions of Fi and Gi(pi−1) in Sections 1.1 and 2.1, we can write this quality consistency

constraint succinctly as pi ∈ Fi for all i ∈M and pi ∈ Gi(pi−1) for all i ∈M \ {1}. We want to find

the price vectors to charge over all nests to maximize the expected revenue from a customer while

satisfying the quality consistency constraint, yielding the problem

z∗ = max
(p1, . . . , pm) ∈ Θm×n :

pi ∈ Fi ∀ i ∈M
pi ∈ Gi(pi−1) ∀i ∈M \ {1}

{
Π(p1, . . . , pm)

}
, (21)

where Π(p1, . . . , pm), as given in (2), is the expected revenue obtained from a customer when we

charge the price vectors (p1, . . . , pm) over all nests.

To obtain an optimal solution to problem (21), we use the ideas in Section 1 to construct

a collection of candidate price vectors for each nest, whereas we use the ideas in Section 2 to

stitch together an optimal solution to problem (21) by picking one price vector from each one of

the candidate collections. To construct a collection of candidate price vectors for each nest, we

assume that (p∗1, . . . , p
∗
m) is an optimal solution to problem (21) and the values of minj∈N p

∗
ij and

maxj∈N p
∗
ij for all i ∈M are known to us. In this case, letting `∗i = minj∈N p

∗
ij and w∗i = maxj∈N p

∗
ij

for notational brevity, the critical observation is that we can replace the constraints pi ∈ Gi(pi−1)

for all i ∈ M \ {1} in problem (21) with `∗i ≤ pij ≤ w∗i for all i ∈ M , j ∈ N without changing the

optimal solution to this problem. If we replace the constraints pi ∈ Gi(pi−1) for all i ∈ M \ {1}
in problem (21) with `∗i ≤ pij ≤ w∗i for all i ∈ M , j ∈ N , then problem (21) becomes similar to

problem (3). The only difference is that problem (21) has the upper and lower bound constraints

`∗i ≤ pij ≤ w∗i for all i ∈ M , j ∈ N on the prices. We can establish an analogue of Theorem 2

when there are upper and lower bound constraints on the prices, in which case, for each nest i,

we can use the dynamic program in (11) to construct the collection of candidate price vectors. All

we need to do is to impose the constraint `∗i ≤ pij ≤ w∗i in addition to the constraint pij ≥ pi,j−1

in the dynamic program in (11). With essentially no modifications, we can show that analogues

of Lemma 3 and Theorem 4 continue to hold when there are upper and lower bound constraints

24

on the prices, in which case, it follows that there are at most nq candidate price vectors in the

collections that we construct for each nest. Therefore, if we know the values of `∗i and w∗i for nest

i, then we can construct a collection of candidate price vectors Pi for nest i that includes at most

nq price vectors and we can stitch together an optimal solution to problem (21) by picking one

price vector from each one of the collections P1, . . . ,Pm. The preceding discussion is under the

assumption that the values of `∗i and w∗i are known to us. Since we do not know the values of `∗i and

w∗i , we can repeat the preceding discussion in this paragraph to construct a collection of candidate

price vectors for each possible value of `∗i and w∗i . Since there are q possible prices for a product,

there are O(q2) possible values of `∗i and w∗i . Therefore, we can repeat constructing a collection

of candidate price vectors for each possible value of `∗i and w∗i to come up with a collection of

candidate price vectors Pi for nest i that includes O(nq3) price vectors. Next, we use the ideas in

Section 2 to stitch together an optimal solution to problem (21) by picking one price vector from

each one of the candidate collections P1, . . . ,Pm. For any z ∈ <+, we define h(z) as

h(z) = max
(p1, . . . , pm) ∈ P1 × . . .× Pm :

pi ∈ Fi ∀ i ∈M
pi ∈ Gi(pi−1) ∀ i ∈M \ {1}

{∑
i∈M

Vi(pi)
γi (Ri(pi)− z)

}
, (22)

where Pi in the problem above is the collection of candidate price vectors that we construct for

nest i. We note that h(z) is similar to g(z) in (14). The only difference is that the definition of h(z)

includes the additional constraints pi ∈ Fi for all i ∈M . With no modifications, we can show that

an analogue of Theorem 5 continues to hold for problem (21). In particular, if we let ẑ be such that

v0 ẑ = h(ẑ) and (p̂1, . . . , p̂m) be an optimal solution to problem (22) when we solve this problem

with z = ẑ, then the objective value provided by the solution (p̂1, . . . , p̂m) for problem (21) is at

least as large as the optimal objective value of this problem. In this case, we observe that we can

use the dynamic program in (15) to obtain an optimal solution to problem (22) for a fixed value

of z and we can use the linear program in (16) to find the value of ẑ satisfying v0 ẑ = h(ẑ). All

we need to do is to use the collections of candidate price vectors that we generate for each nest

in these dynamic and linear programs. Once we find the value of ẑ satisfying v0 ẑ = h(ẑ), we can

solve problem (22) with z = ẑ to obtain an optimal solution to problem (21).

There are O(nq3) price vectors in the candidate collection constructed for each nest. So, we can

solve the dynamic program in (15) in O(q
∑

i∈M |Pi|) = O(mnq4) operations. Since |M(wi−1)| =

O(|Pi|) = O(nq3), under price ladders both inside and between nests, there are O(mq) decision

variables and O(q
∑

i∈M |Pi|) = O(mnq4) constraints in the linear program in (16).

3.2 Excluding Products from Price Ladders

In certain applications, it may be necessary to exclude some of the products from the quality

consistency constraint. For example, it may not be possible to directly compare the qualities of

some of the products, in which case, there is no reason to ensure a particular ordering between

the prices for these products. In this section, we extend our results to the case where some of the

25

products are excluded from the quality consistency constraint. For concreteness of the presentation,

we focus on price ladders inside nests, but our discussion extends to price ladders between nests. We

index the nests by M = {1, . . . ,m} and the products in each nest by N = {1, . . . , n}. Without loss

of generality, the products {1, . . . , k} in each nest are indexed in the order of increasing quality,

but there is no quality consistency constraint for the products {k + 1, . . . , n}. In other words, the

quality consistency constraint ensures that pi1 ≤ pi2 ≤ . . . ≤ pik, in which case, the set of feasible

price vectors in nest i is given by F̄i = {pi ∈ Θn : pij ≥ pi,j−1 ∀ j = 2, . . . , k}. Our goal is to find

the price vectors to charge over all nests to maximize the expected revenue from a customer while

satisfying the quality consistency constraint. Therefore, we want to solve the problem

z∗ = max
(p1, . . . , pm) ∈ Θm×n :

pi ∈ F̄i ∀ i ∈M

{
Π(p1, . . . , pm)

}
. (23)

The problem above assumes that the same number of products are excluded from the quality

consistency constraint for different nests, but this assumption is only for notational brevity.

We use the ideas in Section 1 to obtain an optimal solution to problem (23). To construct

a collection of candidate price vectors for each nest, we observe that the only difference between

problems (3) and (23) is that some of the products are excluded from the quality consistency

constraint in problem (23). We can establish an analogue of Theorem 2 when some of the products

are excluded from the quality consistency constraint, in which case, for each nest i, we can use

the dynamic program in (11) to construct the collection of candidate price vectors. All we need to

do is to continue imposing the constraint pij ≥ pi,j−1 when choosing the prices for the products

{1, . . . , k} in the dynamic program in (11), but stop imposing this constraint when choosing the

prices for the products {k + 1, . . . , n}. We can show that analogues of Lemma 3 and Theorem 4

continue to hold when some of the products are excluded from the quality consistency constraint,

which implies that there are at most nq candidate price vectors in the collections that we construct

for each nest. We use Pi to denote the collection that we construct for nest i.

We use a variant of problem (4) to stitch together an optimal solution to problem (23) by

picking one price vector from each one of the candidate collections P1, . . . ,Pm. In particular, we

replace the collections of price vectors P1, . . . ,Pm in problem (4) with those constructed by using

the approach described in the previous paragraph and continue using f(z) to denote the optimal

objective value of this problem. With no modifications, we can show that an analogue of Theorem 1

holds for problem (23). That is, if we let ẑ be such that v0 ẑ = f(ẑ) and p̂i be an optimal solution

to problem (5), then the objective value provided by the solution (p̂1, . . . , p̂m) for problem (23) is

at least as large as the optimal objective value of this problem. In this case, we can use the linear

program in (6) to find the value of ẑ satisfying v0 ẑ = f(ẑ). Once we find the value of ẑ satisfying

v0 ẑ = f(ẑ), we can solve problem (5) for all i ∈ M to obtain an optimal solution to problem

(23). Ultimately, excluding some of the products from the quality consistency constraint does not

bring additional computational burden when finding the optimal prices for the products.

26

3.3 Padding in Price Ladders

In this section, we consider the case where there is a padding in the price ladders so that the

prices for the successive products in the quality consistency constraint are separated by a certain

amount. For concreteness of the presentation, we focus on price ladders inside nests, but our

discussion extends to price ladders between nests. We index the nests by M = {1, . . . ,m} and the

products in each nest by N = {1, . . . , n}. The products in each nest are indexed in the order of

increasing quality. The quality consistency constraint ensures that the price for a product of higher

quality exceeds the price for a product of lower quality by at least δ. In other words, the prices

for the products in nest i satisfy pi1 + δ ≤ pi2, pi2 + δ ≤ pi3, . . . , pi,n−1 + δ ≤ pin. Thus, the set of

feasible price vectors in nest i is given by Fδi = {pi ∈ Θn : pij ≥ pi,j−1 + δ ∀ j ∈ N \ {1}} for some

δ ∈ <. For some choices of δ, Fδi can be empty and we address this issue shortly. In this section,

we assume that δ ≥ 0 so that the prices for the successive products are separated by at least δ, but

our discussion easily extends to the case where δ ≤ 0, so that the prices for the successive products

are allowed to overlap by at most −δ. Our goal is to solve the problem

z∗ = max
(p1, . . . , pm) ∈ Θm×n :

pi ∈ Fδi ∀ i ∈M

{
Π(p1, . . . , pm)

}
. (24)

The problem above assumes that the padding δ is the same for all successive product pairs, but it

is straightforward to allow different paddings for different successive product pairs.

Throughout this section, we assume that the set of possible prices Θ for a product includes

prices that are large enough in a sense that we make precise below. To satisfy this assumption,

we can augment the set of possible prices for a product with large prices and set the preference

weights corresponding to these large prices small enough that a product is almost never purchased

at these large prices. In particular, since the preference weight of a product becomes larger as

we charge a smaller price, letting α =
∑

i∈M (
∑

j∈N vij(θ
1))γi/(v0 +

∑
i∈M (

∑
j∈N vij(θ

1))γi), the

probability that a customer makes a purchase is always upper bounded by α. We assume that the

largest possible price θq that we can charge for a product satisfies θq ≥ (n − 1) δ/(1 − α) and the

prices {θq − (n− j) δ : j ∈ N \ {n}} are included in the set of possible prices for a product. Due

to this assumption, if we define the price vector p̂i = (p̂i1, . . . , p̂in) as p̂ij = θq − (n − j) δ for

all j ∈ N , then p̂i satisfies two properties. First, we have p̂ij ≥ p̂i,j−1 + δ for all j ∈ N \ {1}
so that p̂i ∈ Fδi , indicating that Fδi is not empty. Second, since the largest possible price is

θq and the probability that a customer makes a purchase is upper bounded by α, the expected

revenue from a customer is upper bounded by α θq. Thus, the optimal objective value of problem

(24) satisfies z∗ ≤ α θq. In this case, we obtain Ri(p̂i) =
∑

j∈N p̂ij vij(p̂ij)/
∑

j∈N vij(p̂ij) ≥∑
j∈N (θq − (n− 1) δ) vij(p̂ij)/

∑
j∈N vij(p̂ij) = θq − (n − 1) δ ≥ α θq ≥ z∗, where the second

inequality is by the assumption that θq ≥ (n− 1) δ/(1− α).

We use the ideas in Section 1 to obtain an optimal solution to problem (24). To construct

a collection of candidate price vectors for each nest, we observe that problem (3) is a special

27

case of problem (24) with δ = 0. We can establish an analogue of Theorem 2 when there is a

padding in the price ladders. The proof of Theorem 2 uses the fact that there exists p̃i ∈ Fi that

satisfies Ri(p̃i) ≥ z∗. Under the assumption that the largest possible price for a product satisfies

θq ≥ (n − 1) δ/(1 − α) and the prices {θq − (n − j) δ : j ∈ N \ {n}} are included in the set of

possible prices for a product, the discussion in the previous paragraph shows that there exists

p̂i ∈ Fδi that satisfies Ri(p̂i) ≥ z∗. Thus, this assumption becomes useful to establish an analogue

of Theorem 2 when there is a padding in the price ladders. Once we establish an analogue of

Theorem 2, we can use the dynamic program in (11) to construct the collection of candidate price

vectors for each nest i. All we need to do is to replace the constraint pij ≥ pi,j−1 in the dynamic

program in (11) with the constraint pij ≥ pi,j−1 + δ. We can establish analogues of Lemma 3 and

Theorem 4 as well when there is a padding in the price ladders. In particular, to show that an

analogue of Lemma 3 continues to hold, we use the following observation. Assume that the price

vectors p−i = (p−i1, . . . , p
−
in) and p+

i = (p+
i1, . . . , p

+
in) satisfy p−i ∈ Fδi and p+

i ∈ Fδi . We define the

price vectors p̃i = (p̃i1, . . . , p̃in) and p̄i = (p̄i1, . . . , p̄in) as p̃ij = p̂−ij ∨ p̂
+
ij and p̄ij = p̂−ij ∧ p̂

+
ij for all

j ∈ N . Since p−i ∈ Fδi and p+
i ∈ Fδi , we have p−ij ≥ p−i,j−1 + δ and p+

ij ≥ p+
i,j−1 + δ, which implies

that max{p−ij , p
+
ij} ≥ max{p−i,j−1 + δ, p+

i,j−1 + δ}. Therefore, we obtain

p̃ij = max{p̂−ij , p̂
+
ij} ≥ max{p̂−i,j−1 + δ, p̂+

i,j−1 + δ} = max{p̂−i,j−1, p̂
+
i,j−1}+ δ = p̃i,j−1 + δ

for all j ∈ N \ {1}, establishing that p̃i ∈ Fδi . Similarly, since p−i ∈ Fδi and p+
i ∈ Fδi , we have p−ij ≥

p−i,j−1 + δ and p+
ij ≥ p

+
i,j−1 + δ, which implies that min{p−ij , p

+
ij} ≥ min{p−i,j−1 + δ, p+

i,j−1 + δ}. Thus,

we obtain p̄ij = min{p̂−ij , p̂
+
ij} ≥ min{p̂−i,j−1 + δ, p̂+

i,j−1 + δ} = min{p̂−i,j−1, p̂
+
i,j−1}+ δ = p̄i,j−1 + δ for

all j ∈ N \ {1}, establishing that p̄i ∈ Fδi . Once we observe that p̃i ∈ Fδi and p̄i ∈ Fδi , we can

follow the proof of Lemma 3 line by line to show that an analogue of Lemma 3 continues to hold

when there is a padding in the price ladders. This lemma implies that if we replace the constraint

pi ∈ Fi in problem (10) with pi ∈ Fδi , then as the value of ui in this problem gets larger, the

optimal price for each product either does not change or gets larger. Once we establish an analogue

of Lemma 3, we can also establish an analogue of Theorem 4 by following the proof of this theorem

line by line, in which case, there are at most nq candidate price vectors in the collections that we

construct for each nest. The discussion so far allows us to construct a collection of candidate price

vectors for each nest. The approach that we use to stitch together an optimal solution to problem

(24) by picking one price vector from each one of the candidate collections is identical to the one

described at the end of the previous section, where some of the products are excluded from the

quality consistency constraint. Ultimately, having a padding in the price ladders does not bring

additional computational burden when finding the optimal prices for the products.

3.4 Approximations for Prices on a Continuum

Throughout the paper, our approach assumes that the prices that we charge for the products are

chosen within a finite set of possible prices. As mentioned in the introduction, the advantage

of this approach is that the modeler can design the set of possible prices to correspond to the

28

prices that are commonly used in retail, such as prices that end in 99 cents or prices that are

in increments of 10 dollars. Furthermore, the preference weight of a product can depend on its

price in an arbitrary fashion. In certain applications, however, there may not be a clear way of

choosing a finite set of possible prices for the products. Also, by restricting attention to a finite

set of possible prices, we incur a revenue loss when compared with the case where the prices are

allowed to lie on a continuum. In this section, we discuss how we can choose a finite set of possible

prices for the products so that we can bound the revenue loss incurred by restricting attention to a

finite set of possible prices. There are two possible interpretations for the result that we give in this

section. First, our result provides a useful guideline to choose a finite set of possible prices for the

products. Second, our result bounds the revenue loss incurred by restricting attention to a finite

set of possible prices when the prices for the products can actually lie on a continuum.

We consider the case where the price for each product lies on a continuum so that pij ∈ [L,U]

for some L,U > 0. If we charge the price pij for product j in nest i, then the preference weight of

this product is given by vij(pij). We assume that vij(pij) is a decreasing and differentiable function

of pij taking strictly positive values over the interval [L,U]. For example, it is common to assume

that vij(pij) = exp(αij −βij pij), where αij and βij are fixed parameters. Using v̇ij(·) to denote the

first derivative of vij(·), we let ζ be such that maxpij∈[L,U]{|v̇ij(pij)| pij/vij(pij)} ≤ ζ for all i ∈M ,

j ∈ N . The expression |v̇ij(pij)| pij/vij(pij) is identical to the expression for the price elasticity of

demand; see Gadi et al. (2005). Without loss of generality, we assume that ζ ≥ 1. To come up with

a finite set of possible prices for the products, we choose ρ such that 0 < ρ < 1/ζ and consider the

set of possible prices on a logarithmic grid given by Θ = {(1 + ρ)k : k1 ≤ k ≤ k2} ∪ {L,U}, where

k1 and k2 satisfy (1 + ρ)k1−1 < L ≤ (1 + ρ)k1 and (1 + ρ)k2 ≤ U < (1 + ρ)k2+1. We define the round

down operator b·c that rounds its argument down to the nearest point in Θ. In other words, we

have bxc = max{y ∈ Θ : y ≤ x}. In the next proposition, we bound the revenue loss incurred by

using prices in the finite set Θ, rather than prices over the interval [L,U].

Proposition 10 For any p = (p1, . . . , pm) such that pij ∈ [L,U] for all i ∈ M , j ∈ N , let

p̂ = (p̂1, . . . , p̂m) be such that p̂ij = bpijc for all i ∈ M , j ∈ N . Then, we have Π(p1, . . . , pm) ≤
Π(p̂1, . . . , p̂m)/(1− ζρ)γ̄+2, where γ̄ = maxi∈M γi.

Proof. Since p̂ij = bpijc, we have p̂ij ≤ pij ≤ (1+ρ) p̂ij . To obtain a lower bound on vij((1+ρ) p̂ij),

we observe that

vij((1 + ρ) p̂ij) = vij(p̂ij)−
∫ (1+ρ) p̂ij

p̂ij

|v̇ij(q)| dq ≥ vij(p̂ij)−
vij(p̂ij)

p̂ij

∫ (1+ρ) p̂ij

p̂ij

|v̇ij(q)|
q

vij(q)
dq

≥ vij(p̂ij)−
vij(p̂ij)

p̂ij

∫ (1+ρ) p̂ij

p̂ij

ζ dq = vij(p̂ij)− ζρ vij(p̂ij),

where the first equality is by the fact that vij(·) is decreasing, in which case, we have v̇ij(·) =

−|v̇ij(·)|, the first inequality is also by the fact that vij(·) is decreasing so that vij(p̂ij)/p̂ij ≥ vij(q)/q

29

for all q ∈ [p̂ij , (1 + ρ) p̂ij] and the second inequality follows from the definition of ζ. Thus, the

chain of inequalities above yields vij((1 + ρ) p̂ij) ≥ (1 − ζρ) vij(p̂ij). In this case, we obtain

Ri(pi) =
∑

j∈N pij vij(pij)/
∑

j∈N vij(pij) ≤
∑

j∈N (1 + ρ) p̂ij vij(p̂ij)/
∑

j∈N vij((1 + ρ) p̂ij) ≤∑
j∈N (1 + ρ) p̂ij vij(p̂ij)/

∑
j∈N ((1 − ζρ) vij(p̂ij)) ≤

∑
j∈N p̂ij vij(p̂ij)/

∑
j∈N ((1 − ζρ)2 vij(p̂ij)) =

Ri(p̂i)/(1 − ζρ)2, where the first inequality uses the fact that p̂ij ≤ pij ≤ (1 + ρ) p̂ij and vij(·) is

decreasing, the second inequality uses the fact that vij((1 + ρ) p̂ij) ≥ (1− ζρ) vij(p̂ij) and the third

inequality uses the fact that ζ ≥ 1, which implies that (1 + ρ)/(1 − ζρ) ≤ (1 + ζρ)/(1 − ζρ) ≤
1/(1− ζρ)2. Similarly, using the fact that pij ≤ (1 +ρ) p̂ij and vij(·) is decreasing, we have Vi(pi) =∑

j∈N vij(pij) ≥
∑

j∈N vij((1 + ρ) p̂ij) ≥ (1− ζρ)
∑

j∈N vij(p̂ij) = (1− ζρ)Vi(p̂i), in which case, we

obtain v0 +
∑

i∈M Vi(pi)
γi ≥ v0 +

∑
i∈M ((1− ζρ)Vi(p̂i))

γi ≥ (1− ζρ)γ̄ (v0 +
∑

i∈M Vi(p̂i)
γi). Thus,

using the definition of Π(p1, . . . , pm) in (2), we get

Π(p1, . . . , pm) =

∑
i∈M Vi(pi)

γi Ri(pi)

v0 +
∑

i∈M Vi(pi)γi
≤

∑
i∈M Vi(p̂i)

γi Ri(p̂i)

(1− ζρ)γ̄+2(v0 +
∑

i∈M Vi(p̂i)γi)
=

Π(p̂1, . . . , p̂m)

(1− ζρ)γ̄+2
,

where the inequality follows from the fact that Ri(pi) ≤ Ri(p̂i)/(1− ζρ)2 and v0 +
∑

i∈M Vi(pi)
γi ≥

(1− ζρ)γ̄ (v0 +
∑

i∈M Vi(p̂i)
γi) as shown above, together with the fact that vij(·) is decreasing and

p̂ij ≤ pij so that Vi(pi) =
∑

j∈N vij(pij) ≤
∑

j∈N vij(p̂ij) = Vi(p̂i). �

Proposition 10 can allow us to obtain approximate solutions to the pricing problems considered

in this paper by using a finite set of possible prices for the products, when the prices for the

products can actually lie on a continuum. For example, consider problem (3) when the price

for each product can take values over the interval [L,U]. We use p∗ = (p∗1, . . . , p
∗
m) to denote

an optimal solution to problem (3) when the price for each product can take values over the

interval [L,U]. We can use our approach in this paper to obtain an optimal solution to problem (3)

under the assumption that the set of possible prices for the products is given by the logarithmic

grid Θ = {(1 + ρ)k : k1 ≤ k ≤ k2} ∪ {L,U}. We use p̃ = (p̃1, . . . , p̃m) to denote an optimal solution

to problem (3) when the set of possible prices for the products is given by the logarithmic grid. If we

define the prices p̂ = (p̂1, . . . , p̂m) such that p̂ij = bp∗ijc for all i ∈M , j ∈ N , then we have p̂ij ∈ Θ,

as the round down operator rounds its argument down to the nearest point in Θ. Furthermore,

noting that p∗ is a feasible solution to problem (3) when the price for each product can take values

over the interval [L,U], we have p∗ij ≥ p∗i,j−1 for all i ∈M , j ∈ N . Thus, since bxc is an increasing

function of x, we also obtain p̂ij = bp∗ijc ≥ bp∗i,j−1c = p̂i,j−1, which implies that p̂ is a feasible

solution to problem (3) when the set of possible prices for the products is given by the logarithmic

grid. In this case, we have Π(p∗1, . . . , p
∗
m) ≤ Π(p̂1, . . . , p̂m)/(1− ζρ)γ̄+2 ≤ Π(p̃1, . . . , p̃m)/(1− ζρ)γ̄+2,

where the first inequality is by Proposition 10 and the second inequality is by the fact that p̃ is

an optimal solution to problem (3) when the set of possible prices for the products is given by the

logarithmic grid, whereas p̂ is only a feasible solution. The last chain of inequalities implies that if

we solve problem (3) under the assumption that the set of possible prices for the products is given

by the logarithmic grid, then the optimal objective value of problem (3) does not deteriorate by

more than a factor of (1− ζρ)γ̄+2, when compared with the case where we solve problem (3) under

the assumption that the price for each product can take values over the interval [L,U].

30

4 Numerical Experiments

In this section, we provide numerical experiments to show that the approaches in Sections 1 and 2

can obtain the optimal solutions to problems (3) and (13) reasonably fast. We also investigate the

number of candidate price vectors that we construct to obtain the optimal solutions.

4.1 Price Ladders Inside Nests

In this section, we consider problem instances with price ladders inside nests. In our numerical

experiments, we vary the number of nests over m ∈ {2, 4, 6}, the number of products in each nest

over n ∈ {10, 20, 30} and the number of possible prices for each product over q ∈ {10, 30}. This setup

provides 18 parameter combinations for (m,n, q). In each parameter combination, we generate 10

individual problem instances by using the following approach. The possible prices for each product

take values over the interval [1, 10] and we obtain the prices {θ1, . . . , θq} by dividing the interval

[1, 10] into q equal pieces. To come up with the preference weights, we sample αij and βij from the

uniform distribution over the interval [0, 2] for all i ∈M , j ∈ N . The preference weight of product

j in nest i corresponding to the price pij is given by exp(αij − βij pij). The nested logit model

has a random utility maximization interpretation, where a customer associates random utilities

with the products and the no purchase option, choosing the option with the largest utility. In the

random utility maximization setup, αij captures the nominal mean utility of product j in nest i

and βij captures how the mean utility of product j in nest i changes as a function of its price;

see McFadden (1974). We sample the dissimilarity parameter γi for each nest i from the uniform

distribution over the interval [0.25, 1]. For each problem instance, we use the approach described

at the end of Section 1.5 to obtain an optimal solution to problem (3).

We summarize our numerical results in Table 1. The first column in this table shows the

parameter configurations for our test problems. We recall that we generate 10 individual problem

instances in each parameter configuration. The second column shows the average CPU seconds to

obtain an optimal solution to problem (3), where the average is computed over 10 problem instances

that we generate for a particular parameter combination. Our numerical experiments are carried

out in OS X Yosemite with 16 GB Ram and 2.8 GHz Intel Core i7 CPU in Java 1.7.0. The third

and fourth columns respectively show the maximum and minimum CPU seconds over 10 problem

instances. Similar to the average, the maximum and minimum are computed over 10 problem

instances that we generate for a particular parameter combination. There are two main steps in

obtaining an optimal solution to problem (3). First, we construct the collection of candidate price

vectors for each nest, which requires solving problem (12) by using the parametric simplex method

to generate the possible optimal solutions to this problem for all values of ui ∈ <+. Second, we

solve problem (6) to stitch together an optimal solution by using the collection of candidate price

vectors for each nest. The fifth column in Table 1 shows what percent of the CPU seconds is spent

on generating the collections of candidate price vectors. The remaining portion of the CPU seconds

is spent on stitching together an optimal solution. The sixth column shows the average number of

31

Perc. No of Cand.
Param. Time Price Vectors in
Comb. Total CPU Secs. Const. Each Nest
(m,n, q) Avg. Max. Min. Cand. Avg. Max. Min.

(2, 10, 10) 0.002 0.010 0.000 99.99 19 28 11
(2, 10, 30) 0.012 0.018 0.009 98.39 59 97 22
(2, 20, 10) 0.003 0.011 0.001 86.21 26 36 16
(2, 20, 30) 0.029 0.054 0.019 98.26 81 116 56
(2, 30, 10) 0.004 0.013 0.001 92.10 28 42 18
(2, 30, 30) 0.047 0.058 0.029 99.14 87 111 53

(4, 10, 10) 0.003 0.011 0.001 92.00 21 27 14
(4, 10, 30) 0.027 0.047 0.018 97.07 64 77 45
(4, 20, 10) 0.005 0.015 0.003 94.12 28 38 19
(4, 20, 30) 0.051 0.082 0.038 97.85 74 93 59
(4, 30, 10) 0.007 0.020 0.004 97.06 28 40 22
(4, 30, 30) 0.092 0.133 0.058 99.13 83 114 56

(6, 10, 10) 0.003 0.011 0.001 90.32 20 26 18
(6, 10, 30) 0.038 0.049 0.031 97.91 65 84 54
(6, 20, 10) 0.006 0.014 0.003 92.73 23 29 16
(6, 20, 30) 0.079 0.094 0.064 98.98 79 95 67
(6, 30, 10) 0.010 0.017 0.006 97.89 27 35 24
(6, 30, 30) 0.133 0.159 0.112 99.10 86 107 70

Table 1: Computational results for test problems with price ladders inside nests.

price vectors in the collection that we generate for each nest, where the average is computed over

all nests in a problem instance and over 10 problem instances that we generate for a particular

parameter combination. The seventh and eighth columns respectively show the maximum and

minimum number of price vectors in the collection that we generate for each nest.

The results in Table 1 indicate that we can obtain an optimal solution to problem (3) rather

fast. For the largest problem instances with m = 6, n = 30 and q = 30, which involve mn = 180

products, we can obtain an optimal solution in a fraction of a second. The maximum CPU seconds

over all of our test problems is 0.16. Naturally, the CPU seconds tend to increase as the number of

nests, the number of products or the number of possible prices increases. We observe that almost

all of the CPU seconds are spent on constructing the collections of candidate price vectors. In

Section 1.4, we show that we need to construct at most nq candidate price vectors in each nest,

but our numerical results demonstrate that the number of candidate price vectors that we actually

end up constructing can be substantially smaller than the upper bound of nq. For example, for the

problem instances with n = 30 and q = 30, we have nq = 900, but the average number of candidate

price vectors that we actually construct for each nest is about 85 and the number of candidate price

vectors that we actually construct for each nest never exceeds 114.

To demonstrate that ad hoc approaches to satisfy the price ladder constraints do not necessarily

yield satisfactory solutions, we test the performance of a benchmark strategy that computes an

optimal solution to problem (3) without paying any attention to the price ladder constraints and

modifies this solution heuristically to satisfy the price ladder constraints. In this benchmark

32

Param. Perc. Gap with
Comb. Opt. Exp. Rev.
(m,n, q) Avg. Max. Min.

(2, 10, 10) 7.15 18.25 0.00
(2, 10, 30) 7.38 14.38 0.00
(2, 20, 10) 9.30 17.60 0.00
(2, 20, 30) 9.90 18.71 0.00
(2, 30, 10) 8.52 18.05 0.00
(2, 30, 30) 8.47 17.11 0.00

Param. Perc. Gap with
Comb. Opt. Exp. Rev.
(m,n, q) Avg. Max. Min.

(4, 10, 10) 6.35 11.27 0.00
(4, 10, 30) 6.39 12.83 0.07
(4, 20, 10) 6.03 12.95 0.00
(4, 20, 30) 6.55 13.36 0.00
(4, 30, 10) 7.85 11.94 0.00
(4, 30, 30) 7.92 13.04 0.00

Param. Perc. Gap with
Comb. Opt. Exp. Rev.
(m,n, q) Avg. Max. Min.

(6, 10, 10) 4.37 9.33 0.00
(6, 10, 30) 4.48 8.58 0.01
(6, 20, 10) 5.41 9.42 0.00
(6, 20, 30) 4.50 8.63 0.02
(6, 30, 10) 4.19 11.46 0.00
(6, 30, 30) 7.61 12.48 0.00

Table 2: Performance of the ad hoc benchmark for test problems with price ladders inside nests.

strategy, we compute an optimal solution to problem (3) without considering the price ladder

constraints pi ∈ Fi for all i ∈ M . Using p∗ = (p∗1, . . . , p
∗
m) to denote the optimal solution obtained

in this fashion, we define the solution p̂ = (p̂1, . . . , p̂m) as p̂ij = max{p∗i1, p∗i2, . . . , p∗ij} for all i ∈M ,

j ∈ N . Thus, the solution p̂ is obtained by “bumping up” the prices in the solution p∗ when

the solution p∗ does not satisfy the price ladder constraints. By the definition of p̂ij , we have

p̂ij ≥ p̂i,j−1 so that the solution p̂ satisfies p̂i ∈ Fi for all i ∈ M . Similarly, we define the solution

p̃ = (p̃1, . . . , p̃m) as p̃ij = min{p∗ij , p∗i,j+1, . . . , p
∗
in} for all i ∈ M , j ∈ N . By the definition of

p̃ij , we have p̃ij ≥ p̃i,j−1 so that the solution p̃ also satisfies p̃i ∈ Fi for all i ∈ M . Since p̂

and p̃ are both feasible solutions to problem (3), we choose the solution that provides the larger

expected revenue. We refer to this benchmark strategy simply as the ad hoc benchmark. Our goal

in working with the ad hoc benchmark is to demonstrate that ad hoc approaches for satisfying the

price ladder constraints may not yield satisfactory solutions, but we emphasize that the ad hoc

benchmark does not necessarily represent the ultimate heuristic approach that one can design for

problem (3). Furthermore, since our approach can find an optimal solution to problem (3) rather

fast, there is really no pressing need to design heuristics for this problem.

We show the performance of the ad hoc benchmark in Table 2. The first column in this table

shows the parameter configurations for our test problems. The second column shows the average

percent gap between the optimal objective value of problem (3) and the expected revenue obtained

by the ad hoc benchmark, where the average is computed over 10 problem instances that we

generate for a particular parameter combination. In other words, using Optk to denote the optimal

expected revenue for problem instance k that we generate for a particular parameter combination

and Benk to denote the expected revenue obtained by the ad hoc benchmark, the second column

shows the average of the data {100× (Optk − Benk)/Optk : k = 1, . . . , 10}. The third and fourth

columns show the maximum and minimum percent gaps between the optimal objective value of

problem (3) and the expected revenue obtained by the ad hoc benchmark. The results in Table

2 indicate that the ad hoc benchmark can provide good solutions for some problem instances, as

there are problem instances where the percent gap between the optimal expected revenue and the

expected revenue obtained by the ad hoc benchmark is zero. However, the ad hoc benchmark is

generally not reliable. In Table 2, the average optimality gap of the ad hoc benchmark is 6.80%

and its optimality gap can exceed 18% for some problem instances.

33

4.2 Price Ladders Between Nests

In this section, we consider problem instances with price ladders between nests. We generate our

problem instances by using the same approach that we use for generating the problem instances with

price ladders inside nests. For each problem instance, we use the approach described at the end of

Section 2.5 to obtain an optimal solution to problem (13). In particular, to construct the collection

of candidate price vectors for each nest, we solve problem (20) through the parametric simplex

method to generate the possible optimal solutions to this problem for all values of ui ∈ <+. Once

we construct the collections of candidate price vectors, we solve problem (16) to find the value of

ẑ satisfying v0 ẑ = g(ẑ). In this case, by Theorem 5, we can solve problem (14) with z = ẑ to find

an optimal solution to problem (13).

We summarize our numerical results in Table 3. The layout of this table is identical to that

of Table 1. Over all of our test problems, we can obtain an optimal solution to problem (13) in

about 3.35 seconds on average. For the largest problem instances with m = 6, n = 30 and q = 30,

which involve mn = 180 products, the CPU seconds are below 23 seconds. On average, about

half of the CPU seconds is spent on constructing the collections of candidate price vectors. In

Section 2.4, we show that we need to construct at most nq3 candidate price vectors in each nest,

but we actually end up generating substantially fewer candidate price vectors. For example, for the

problem instances with n = 30 and q = 30, we have nq3 = 810,000, but the number of candidate

price vectors that we construct for each nest does not exceed 33,000.

Similar to our approach for the test problems with price ladders inside nests, we test the

performance of a benchmark strategy that computes an optimal solution to problem (13) without

paying any attention to the price ladder constraints and modifies this solution heuristically to

satisfy the price ladder constraints. In this benchmark strategy, we solve problem (13) without

considering the price ladder constraints pi ∈ Gi(pi−1) for all i ∈ M \ {1}. Using p∗ = (p∗1, . . . , p
∗
m)

to denote the optimal solution obtained in this fashion, we define the solution p̂ = (p̂1, . . . , p̂m) as

p̂ij = max{w∗1, . . . , w∗i−1, p
∗
ij} for all i ∈M , j ∈ N , where we have w∗i = maxj∈N p

∗
ij . Thus, similar to

our approach for price ladders inside nests, the solution p̂ is obtained by “bumping up” the prices in

the solution p∗ when the solution p∗ does not satisfy the price ladder constraints. By the definition of

p̂i−1,j , we have maxj∈N p̂i−1,j = maxj∈N max{w∗1, . . . , w∗i−2, p
∗
i−1,j} = max{w∗1, . . . , w∗i−2, w

∗
i−1} ≤

p̂ij for all j ∈ N , where the last inequality follows from the definition of p̂ij . Thus, we obtain

maxj∈N p̂i−1,j ≤ minj∈N p̂ij , which implies that p̂i ∈ Gi(p̂i−1) for all i ∈M \{1}. Similarly, we define

the solution p̃ = (p̃1, . . . , p̃m) as p̃ij = min{p∗ij , `∗i+1, . . . , `
∗
m} for all i ∈ M , j ∈ N , where we have

`∗i = minj∈N p
∗
ij . By the definition of p̃ij , we have minj∈N p̃ij = minj∈N min{p∗ij , `∗i+1, . . . , `

∗
m} =

min{`∗i , `∗i+1, . . . , `
∗
m} ≥ p̃i−1,j for all j ∈ N , where the last inequality follows from the definition of

p̃i−1,j . Thus, we obtain we obtain minj∈N p̃ij ≥ maxj∈N p̃i−1,j , which implies that p̃i ∈ Gi(p̃i−1) for

all i ∈M \{1}. The preceding discussion shows that p̂ and p̃ are both feasible solutions to problem

(13). We choose the solution that provides the larger expected revenue. We refer to this benchmark

strategy as the ad hoc benchmark. We show the performance of the ad hoc benchmark in Table

34

Perc. No of Cand.
Param. Time Price Vectors in
Comb. Total CPU Secs. Const. Each Nest
(m,n, q) Avg. Max. Min. Cand. Avg. Max. Min.

(2, 10, 10) 0.015 0.067 0.005 52.32 297 520 183
(2, 10, 30) 0.459 0.697 0.360 69.75 3,777 5,983 1,455
(2, 20, 10) 0.035 0.115 0.018 47.55 785 965 376
(2, 20, 30) 2.432 3.135 1.905 73.24 13,637 22,789 6,556
(2, 30, 10) 0.073 0.200 0.043 45.25 1,342 1,541 1,008
(2, 30, 30) 5.450 6.440 4.426 72.55 23,032 32,567 14,038

(4, 10, 10) 0.030 0.103 0.015 39.53 326 477 198
(4, 10, 30) 1.535 1.888 1.160 54.42 5,986 8,510 3,289
(4, 20, 10) 0.077 0.168 0.059 36.56 852 941 684
(4, 20, 30) 5.605 5.853 4.899 60.98 15,433 18,048 12,761
(4, 30, 10) 0.150 0.275 0.126 36.22 1,356 1,484 1,118
(4, 30, 30) 12.660 13.817 11.062 61.84 23,578 27,169 19,291

(6, 10, 10) 0.040 0.121 0.027 38.12 315 463 239
(6, 10, 30) 2.353 2.688 2.131 57.50 5,225 6,513 4,164
(6, 20, 10) 0.117 0.219 0.090 34.67 836 980 631
(6, 20, 30) 8.630 9.556 7.612 59.52 14,897 17,872 13,008
(6, 30, 10) 0.232 0.350 0.201 31.71 1,367 1,453 1,305
(6, 30, 30) 20.445 22.434 18.474 58.00 23,602 26,204 20,810

Table 3: Computational results for test problems with price ladders between nests.

4. Similar to our observations for the test problems with price ladders inside nests, the ad hoc

benchmark is generally not reliable. Over all of our test problems, the average percent gap between

the optimal expected revenue and the expected revenue obtained by the ad hoc benchmark is about

6.28%. There are test problems where the expected revenue obtained by the ad hoc benchmark

lags behind the optimal expected revenue by more than 16%.

5 Conclusions

We provided algorithms to solve pricing problems under the nested logit model when there are

price ladders inside nests or between nests. We gave extensions of these algorithms to the cases

where there are price ladders both inside and between nests, where some products are excluded

from the quality consistency constraint and where there is a padding in the price ladders. Our

development focused on the case where the prices for the products are chosen within a finite set

of possible prices. We developed approximation guarantees when the prices of the products are

allowed to lie on a continuum, but we consider a finite set of possible prices for the products.

As discussed in the introduction section, there can be quality consistency constraints that

are different from the ones considered in this paper. The extensions provided in this paper

point out that our general approach provides some flexibility for dealing with various quality

consistency constraints. We hope that our extensions can serve as a starting point when dealing

with different forms of quality consistency constraints and it is interesting to investigate how to

construct collections of candidate price vectors under other quality consistency constraints that are

35

Param. Perc. Gap with
Comb. Opt. Exp. Rev.
(m,n, q) Avg. Max. Min.

(2, 10, 10) 6.42 16.33 0.00
(2, 10, 30) 6.27 13.76 0.00
(2, 20, 10) 5.82 11.01 0.00
(2, 20, 30) 5.87 10.78 0.00
(2, 30, 10) 5.75 11.66 0.00
(2, 30, 30) 4.30 10.76 0.00

Param. Perc. Gap with
Comb. Opt. Exp. Rev.
(m,n, q) Avg. Max. Min.

(4, 10, 10) 6.43 12.07 0.00
(4, 10, 30) 6.59 13.30 0.00
(4, 20, 10) 5.47 11.71 0.00
(4, 20, 30) 5.92 11.66 0.00
(4, 30, 10) 8.90 13.69 0.00
(4, 30, 30) 9.54 15.18 0.00

Param. Perc. Gap with
Comb. Opt. Exp. Rev.
(m,n, q) Avg. Max. Min.

(6, 10, 10) 6.14 13.32 0.00
(6, 10, 30) 6.65 13.13 0.05
(6, 20, 10) 6.16 10.55 0.00
(6, 20, 30) 5.25 10.79 0.00
(6, 30, 10) 3.98 10.91 0.00
(6, 30, 30) 7.61 13.10 0.00

Table 4: Performance of the ad hoc benchmark for test problems with price ladders between nests.

not considered in this paper. Furthermore, we can study quality consistency constraints for pricing

problems under the nested logit model with more than two stages. The linear programs that we use

to combine the candidate price vectors for the different nests do not work when there are multiple

stages in the nested logit model and extensions in this direction seem nontrivial. Finally, under

price ladders inside nests and between nests, we respectively have the upper bounds of nq and nq3

for the numbers of candidate price vectors in each nest. These upper bounds show that the number

of needed candidate price vectors scales polynomially with the numbers of products and possible

prices, but we can investigate whether it is possible to obtain tighter upper bounds.

References

Aggarwal, G., Feder, T., Motwani, R. and Zhu, A. (2004), Algorithms for multi-product pricing,
in ‘Proceedings of the International Colloquium on Automata, Languages, and Programming’,
pp. 72–83.

Briest, P. and Krysta, P. (2007), Buying cheap is expensive: Hardness of non-parametric multi-
product pricing, in ‘Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms’, New Orleans, LA, pp. 716–725.

Caro, F. and Gallien, J. (2015), ‘Clearance pricing optimization for a fast-fashion retailer’,
Operations Research 60(6), 1404–1422.

Chen, K. D. and Hausman, W. H. (2000), ‘Technical note: Mathematical properties of the
optimal product line selection problem using choice-based conjoint analysis’, Management Science
46(2), 327–332.

Davis, J., Gallego, G. and Topaloglu, H. (2013), Assortment planning under the multinomial
logit model with totally unimodular constraint structures, Technical report, Cornell University,
School of Operations Research and Information Engineering.
Available at http://legacy.orie.cornell.edu/∼huseyin/publications/publications.html.

Davis, J., Gallego, G. and Topaloglu, H. (2014), ‘Assortment optimization under variants of the
nested logit model’, Operations Research 62(2), 250–273.

Dong, L., Kouvelis, P. and Tian, Z. (2009), ‘Dynamic pricing and inventory control of substitute
products’, Manufacturing & Service Operations Management 11(2), 317–339.

Feldman, J. B. and Topaloglu, H. (2014), Capacity constraints across nests in assortment
optimization under the nested logit model, Technical report, Cornell University, School of
Operations Research and Information Engineering.
Available at http://legacy.orie.cornell.edu/∼huseyin/publications/publications.html.

Gadi, F., Gavious, A. and Lowengart, O. (2005), ‘The dynamics of price elasticity of demand in the

36

presence of reference price effects’, Journal of the Academy of Marketing Science 33(1), 66–78.

Gallego, G. and Stefanescu, C. (2009), Upgrades, upsells and pricing in revenue management,
Technical report, Columbia University.

Gallego, G. and Topaloglu, H. (2014), ‘Constrained assortment optimization for the nested logit
model’, Management Science 60(10), 2583–2601.

Gallego, G. and Wang, R. (2014), ‘Multi-product price optimization and competition under the
nested attraction model’, Operations Research 62(2), 450–461.

Hanson, W. and Martin, K. (1996), ‘Optimizing multinomial logit profit functions’, Management
Science 42(7), 992–1003.

Keller, P. W., Levi, R. and Perakis, G. (2014), ‘Efficient formulations for pricing under attraction
demand models’, Math. Programming A. 145, 223–261.

Li, G., Rusmevichientong, P. and Topaloglu, H. (2015), ‘The d-level nested logit model: Assortment
and price optimization problems’, Operations Research 63(2), 325–352.

Li, H. and Huh, W. T. (2011), ‘Pricing multiple products with the multinomial logit and
nested models: Concavity and implications’, Manufacturing & Service Operations Management
13(4), 549–563.

Li, H. and Huh, W. T. (2013), Pricing under the nested attraction model with a multi-stage choice
structure, in ‘INFORMS Annual Meeting, Minneapolis, MN’.

McFadden, D. (1974), Conditional logit analysis of qualitative choice behavior, in P. Zarembka,
ed., ‘Frontiers in Economics’, Academic Press, New York, NY, pp. 105–142.

Nemhauser, G. and Wolsey, L. (1988), Integer and Combinatorial Optimization, John Wiley &
Sons, Inc., Chichester.

Puterman, M. L. (1994), Markov Decision Processes, John Wiley and Sons, Inc., New York.

Rayfield, Z., Rusmevichientong, P. and Topaloglu, H. (2013), ‘Approximation methods for pricing
problems under the nested logit model with price bounds’, INFORMS Journal on Computing (to
appear).

Rusmevchientong, P., Van Roy, B. and Glynn, P. (2006), ‘A nonparametric approach to
multiproduct pricing’, Operations Research 54(1), 82–98.

Song, J.-S. and Xue, Z. (2007), Demand management and inventory control for substitutable
products, Technical report, Duke University, Durham, NC.

Subramanian, S. and Sherali, H. D. (2010), ‘A fractional programming approach for retail category
price optimization’, Journal of Global Optimization 48, 263–277.

Wang, R. (2012), ‘Capacitated assortment and price optimization under the multinomial logit
model’, Operations Research Letters 40, 492–497.

Zhang, D. and Lu, Z. (2013), ‘Assessing the value of dynamic pricing in network revenue
management’, INFORMS Journal on Computing 25(1), 102–115.

37

Appendix: Proof of Theorem 7

In this section, we show Theorem 7. We need the two intermediate lemmas to show Theorem 7. In

the next lemma, we show an ordering between the optimal expected revenues from a customer that

has already decided to make a purchase in different nests.

Lemma 11 If (p∗1, . . . , p
∗
m) is an optimal solution to problem (13), then we have R1(p∗1) ≤ R2(p∗2) ≤

. . . ≤ Rm(p∗m).

Proof. Since (p∗1, . . . , p
∗
m) is a feasible solution to problem (13), we have pi ∈ Gi(pi−1), which implies

that maxj∈N p
∗
i−1,j ≤ minj∈N p

∗
ij . Therefore, the largest price in the price vector p∗i−1 is smaller

than the smallest price in the price vector p∗i . By (1), we observe that Ri−1(p∗i−1) is a convex

combination of the prices in the price vector p∗i−1, whereas Ri(p
∗
i) is a convex combination of the

prices in the price vector p∗i . Since the largest price in the price vector p∗i−1 is smaller than the

smallest price in the price vector p∗i , we obtain Ri−1(p∗i−1) ≤ Ri(p∗i). �

In the next lemma, we show that if the optimal expected revenue from a customer that has

already decided to make a purchase in a particular nest does not exceed the optimal expected

revenue, then the smallest price in the next nest does not exceed the optimal expected revenue.

Lemma 12 If (p∗1, . . . , p
∗
m) is an optimal solution to problem (13) providing the objective value z∗

and Ri(p
∗
i) < z∗ for some i ∈M , then we have i ∈M \ {m} and minj∈N p

∗
i+1,j < z∗.

Proof. First, we show that if Ri(p
∗
i) < z∗ for some i ∈ M , then we have i ∈ M \ {m}. To get

a contradiction, assume that Rm(p∗m) < z∗. By Lemma 11, we have R1(p∗1) ≤ R2(p∗2) ≤ . . . ≤
Rm(p∗m) < z∗. Thus, we obtain Π(p∗1, . . . , p

∗
m) =

∑
i∈M Vi(p

∗
i)
γi Ri(p

∗
i)/(v0 +

∑
i∈M Vi(p

∗
i)
γi) <∑

i∈M Vi(p
∗
i)
γi z∗/(v0 +

∑
i∈M Vi(p

∗
i)
γi) < z∗, which contradicts the fact that (p∗1, . . . , p

∗
m) is an

optimal solution to problem (13).

Second, we show that if Ri(p
∗
i) < z∗ for some i ∈ M , then minj∈N p

∗
i+1,j < z∗. To get a

contradiction assume that there exists a nest k such that Rk(p
∗
k) < z∗ and minj∈N p

∗
k+1,j ≥ z∗. For

notational brevity, we let `∗k+1 = minj∈N p
∗
k+1,j . By our assumption, we have `∗k+1 ≥ z∗. We define a

solution (p̂1, . . . , p̂m) to problem (13) as p̂i = p∗i for all i ∈M\{k} and p̂kj = `∗k+1 for all j ∈ N . Since

the solutions (p∗1, . . . , p
∗
m) and (p̂1, . . . , p̂m) charge the same prices in all nests other than nest k, we

have Vi(p
∗
i)
γi (Ri(p

∗
i)−z∗) = Vi(p̂i)

γi (Ri(p̂i)−z∗) for all i ∈M \{k}. For nest k, we have Rk(p
∗
k) <

z∗, but Rk(p̂k) =
∑

j∈N p̂kj vkj(p̂kj)/
∑

j∈N vkj(p̂kj) =
∑

j∈N `
∗
k+1 vkj(p̂kj)/

∑
j∈N vkj(p̂kj) =

`∗k+1 ≥ z∗. Thus, we obtain Vk(p
∗
k)
γk (Rk(p

∗
k) − z∗) < 0 ≤ Vk(p̂k)

γk (Rk(p̂k) − z∗). The discussion

so far in this paragraph shows that Vi(p
∗
i)
γi (Ri(p

∗
i)− z∗) ≤ Vi(p̂i)γi (Ri(p̂i)− z∗) for all i ∈M and

the inequality holds as strict inequality for nest k. Adding this inequality over all i ∈M , we have∑
i∈M Vi(p

∗
i)
γi (Ri(p

∗
i)− z∗) <

∑
i∈M Vi(p̂i)

γi (Ri(p̂i)− z∗). On the other hand, since (p∗1, . . . , p
∗
m) is

38

an optimal solution to problem (13), we have z∗ =
∑

i∈M Vi(p
∗
i)Ri(p

∗
i)/(v0 +

∑
i∈M Vi(p

∗
i)
γi) and

arranging the terms in this equality yields v0 z
∗ =

∑
i∈M Vi(p

∗
i)
γi (Ri(p

∗
i)− z∗). In this case, having∑

i∈M Vi(p
∗
i)
γi (Ri(p

∗
i)− z∗) <

∑
i∈M Vi(p̂i)

γi (Ri(p̂i)− z∗) and v0 z
∗ =

∑
i∈M Vi(p

∗
i)
γi (Ri(p

∗
i)− z∗)

yields v0 z
∗ <

∑
i∈M Vi(p̂i)

γi (Ri(p̂i) − z∗). Solving for z∗ in this inequality, we obtain z∗ <∑
i∈M Vi(p̂i)Ri(p̂i)/(v0 +

∑
i∈M Vi(p̂i)

γi) = Π(p̂1, . . . , p̂m). Thus, the solution (p̂1, . . . , p̂m) provides

an objective value for problem (13) that is strictly larger than the optimal objective value. In the

rest of the proof, we show that (p̂1, . . . , p̂m) is a feasible solution to problem (13), which yields a

contradiction and the desired result follows.

We have minj∈N p̂kj = `∗k+1 = minj∈N p
∗
k+1,j ≥ maxj∈N p

∗
kj ≥ minj∈N p

∗
kj ≥ maxj∈N p

∗
k−1,j =

maxj∈N p̂k−1,j , where the first equality uses the definition of p̂k, the second equality uses the

definition of `∗k+1, the first and third inequalities use the fact that (p∗1, . . . , p
∗
m) is a feasible solution to

problem (13) so that p∗k+1 ∈ Gk+1(pk) and p∗k ∈ Gk(p∗k−1) and the last equality is by the definition of

p̂k−1. Thus, this chain of inequalities shows that p̂k ∈ Gk(p̂k−1). Similarly, we have minj∈N p̂k+1,j =

minj∈N p
∗
k+1,j = `∗k+1 = maxj∈N p̂kj , where the first and third equalities use the definitions of p̂k+1

and p̂k, whereas the second equality uses the definition of `∗k+1. Thus, this chain of equalities shows

that p̂k+1 ∈ Gk+1(p̂k). Since the solutions (p∗1, . . . , p
∗
m) and (p̂1, . . . , p̂m) charge the same prices in all

nests other than nest k and (p∗1, . . . , p
∗
m) is a feasible solution to problem (13), we have p̂i ∈ Gi(p̂i−1)

for all i ∈ M \ {1, k, k + 1} as well. Therefore, we have p̂i ∈ Gi(p̂i−1) for all i ∈ M \ {1}, which

indicates that (p̂1, . . . , p̂m) is a feasible solution to problem (13). �

In the rest of this section, we show Theorem 7.

For notational brevity, we let R∗i = Ri(p
∗
i), V

∗
i = Vi(p

∗
i), R̂i = Ri(p̂i) and V̂i = Vi(p̂i). First,

we consider a nest i that satisfies R∗i < z∗. By Lemma 12, we observe that i ∈ M \ {m}. Since

p̂i is a feasible solution to problem (17), we have p̂ij ≤ w∗i for all j ∈ N , where w∗i is as defined in

Theorem 7. We claim that p̂ij = w∗i for all j ∈ N . To get a contradiction, assume that p̂ij < w∗i
for some j ∈ N . Since (p∗1, . . . , p

∗
m) is a feasible solution to problem (13), we have p∗i+1 ∈ Gi+1(p∗i),

which implies that minj∈N p
∗
i+1,j ≥ maxj∈N p

∗
ij = w∗i , where the equality is by the definition of w∗i

given in Theorem 7. On the other hand, since R∗i < z∗, Lemma 12 implies that minj∈N p
∗
i+1,j <

z∗. Therefore, we obtain w∗i = maxj∈N p
∗
ij ≤ minj∈N p

∗
i+1,j < z∗. We define a solution p̃i =

(p̃i1, . . . , p̃in) to problem (17) as p̃ij = w∗i for all j ∈ N . This solution is clearly feasible to problem

(17) and satisfies Ri(p̃i) =
∑

j∈N w
∗
i vij(p

∗
ij)/

∑
j∈N vij(p

∗
ij) = w∗i < z∗. Furthermore, we have

Ri(p̂i) =
∑

j∈N p̂ij vij(p̂ij)/
∑

j∈N vij(p̂ij) ≤
∑

j∈N w
∗
i vij(p̂ij)/

∑
j∈N vij(p̂ij) = w∗i = Ri(p̃i). By

the last two chains of inequalities, we get z∗−Ri(p̂i) ≥ z∗−Ri(p̃i) = z∗−w∗i > 0. Noting that the

preference weight of a product becomes smaller as we charge a larger price, since p̂ij ≤ w∗i = p̃ij

for all j ∈ N and the inequality is strict for some j ∈ N , it holds that vij(p̂ij) ≥ vij(p̃ij) for

all j ∈ N and the inequality is strict for some j ∈ N . Thus, adding the last inequality over

all j ∈ N , we obtain Vi(p̂i) > Vi(p̃i). In this case, having z∗ − Ri(p̂i) ≥ z∗ − Ri(p̃i) > 0 and

Vi(p̂i) > Vi(p̃i) implies that Vi(p̂i) (z∗ − Ri(p̂i)) > Vi(p̃i) (z∗ − Ri(p̃i)). Since R∗i < z∗, we have

u∗i = z∗ by the definition of u∗i , in which case, the last inequality can equivalently be written as

39

Vi(p̂i) (Ri(p̂i)− u∗i) < Vi(p̃i) (Ri(p̃i)− u∗i), which contradicts the fact that p̂i is an optimal solution

to problem (17). Thus, our claim holds and we have p̂ij = w∗i for all j ∈ N .

By the claim established in the previous paragraph, we have p̂ij = w∗i for all j ∈ N . Noting that

w∗i = maxj∈N p
∗
ij by the definition of w∗i , we have p̂ij = w∗i ≥ p∗ij for all j ∈ N . Since the preference

weight of a product becomes smaller as we charge a larger price, the last inequality implies that

vij(p̂ij) ≤ vij(p
∗
ij) for all j ∈ N . Adding this inequality over all j ∈ N , we obtain Vi(p̂i) ≤

Vi(p
∗
i). Furthermore, we have Ri(p̂i) =

∑
j∈N w

∗
i vij(p̂ij)/

∑
j∈N vij(p̂ij) = w∗i = maxj∈N p

∗
ij ≤

minj∈N p
∗
i+1,j < z∗, where the first inequality is by the fact that (p∗1, . . . , p

∗
m) is a feasible solution

to problem (13) so that p∗i+1 ∈ Gi+1(p∗i) and the second inequality follows by noting thatR∗i < z∗ and

using Lemma 12. Since w∗i ≥ p∗ij for all j ∈ N , we have Ri(p
∗
i) ≤

∑
j∈N w

∗
i vij(p̂ij)/

∑
j∈N vij(p̂ij) =

w∗i = Ri(p̂i) as well. The last two chains of inequalities show that z∗ − Ri(p∗i) ≥ z∗ − Ri(p̂i) =

z∗ − w∗i > 0. In this case, having Vi(p̂i) ≤ Vi(p
∗
i) and z∗ − Ri(p

∗
i) > z∗ − Ri(p̂i) > 0 yields

Vi(p
∗
i)
γi (z∗ − Ri(p∗i)) > Vi(p̂i)

γi (z∗ − Ri(p̂i)). The last inequality shows that (V ∗i)γi (R∗i − z∗) <
V̂ γi
i (R̂i − z∗) for each nest i that satisfies R∗i < z∗.

Second, we consider a nest i that satisfies R∗i ≥ z∗. In this case, we can follow the same

argument at the beginning of the proof of Theorem 2 to show that (V ∗i)γi (R∗i − z∗) ≤ V̂
γi
i (R̂i− z∗)

for each nest i that satisfies R∗i ≥ z∗. Therefore, we obtain (V ∗i)γi (R∗i − z∗) ≤ V̂ γi
i (R̂i − z∗)

for all i ∈ M . Adding this inequality over all i ∈ M , we have
∑

i∈M (V ∗i)γi (R∗i − z∗) ≤∑
i∈M V̂ γi

i (R̂i − z∗). Since (p∗1, . . . , p
∗
m) is an optimal solution to problem (13), we have z∗ =∑

i∈M (V ∗i)γiR∗i /(v0 +
∑

i∈M (V ∗i)γi). Arranging the terms in this equality, it follows that

v0 z
∗ =

∑
i∈M (V ∗i)γi (R∗i − z∗), in which case, we have v0 z

∗ =
∑

i∈M (V ∗i)γi (R∗i − z∗) ≤∑
i∈M V̂ γi

i (R̂i − z∗). Focusing on the first and last terms in this chain of inequalities and solving

for z∗, we get z∗ ≤
∑

i∈M V̂ γi
i R̂i/(v0 +

∑
i∈M V̂ γi

i) = Π(p̂1, . . . , p̂m). Thus, the solution (p̂1, . . . , p̂m)

provides an expected revenue that is at least as large as the optimal objective value of problem

(13). In the rest of the proof, we show that (p̂1, . . . , p̂m) is a feasible solution to problem (13),

which establishes that (p̂1, . . . , p̂m) is an optimal solution to problem (13).

Consider nest i ∈M\{1}. Noting that p̂i is a feasible solution to problem (17), we obtain p̂ij ≥ `∗i
and p̂i−1,j ≤ w∗i−1 for all j ∈ N , which imply that minj∈N p̂ij ≥ `∗i and maxj∈N p̂i−1,j ≤ w∗i−1. Since

(p∗1, . . . , p
∗
m) is a feasible solution to problem (13), we also have p∗i ∈ Gi(p∗i−1), which implies that

w∗i−1 = maxj∈N p
∗
i−1,j ≤ minj∈N p

∗
ij = `∗i . Therefore, we obtain maxj∈N p̂i−1,j ≤ w∗i−1 ≤ `∗i ≤

minj∈N p̂ij . The last inequality shows that p̂i ∈ Gi(p̂i−1). Since our choice of nest i is arbitrary, we

have p̂i ∈ Gi(p̂i−1) for all i ∈M \ {1}.

40

