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Abstract

We study a class of assortment optimization problems where customers choose among the offered
products according to the nested logit model. There is a fixed revenue associated with each
product. The objective is to find an assortment of products to offer so as to maximize the expected
revenue per customer. We show that the problem is polynomially solvable when the nest dissimilarity
parameters of the choice model are less than one and the customers always make a purchase within
the selected nest. Relaxing either of these assumptions renders the problem NP-hard. To deal with
the NP-hard cases, we develop parsimonious collections of candidate assortments with worst-case
performance guarantees. We also formulate a convex program whose optimal objective value is
an upper bound on the optimal expected revenue. Thus, we can compare the expected revenue
provided by an assortment with the upper bound on the optimal expected revenue to get a feel for
the optimality gap of the assortment. By using this approach, our computational experiments test
the performance of the parsimonious collections of candidate assortments that we develop.



Discrete choice models have been used for nearly half a century to understand how customers select

among a group of products that vary in terms of price and quality. Of particular interest is how demand

for the different products changes as the offer set changes in composition, quality or price. To advance

this agenda, researchers have developed discrete choice models based on axioms as in Luce (1959),

resulting in the basic attraction model, and based on random utility theory as in McFadden (1974),

resulting in the celebrated multinomial logit model. Important extensions include the nested attraction

model of which the nested logit model, introduced byWilliams (1977), is a special case. Justifications and

extensions for the nested logit model are provided in McFadden (1980) and Borsch-Supan (1990). Under

the nested logit model, customers first select a nest, and then, a product within the selected nest. The

nested logit model was developed primarily to avoid the independence of irrelevant alternatives property

suffered by the multinomial logit model; see Ben-Akiva and Lerman (1997).

In this paper, we study a class of assortment optimization problems where the choices of the

customers are governed by the nested logit model. Under this model, customers first select a nest, and

then, a product within the nest. We assume that there is a revenue associated with each product and the

objective is to find a set of products, or an assortment, to offer that maximizes the expected revenue per

customer. This assortment optimization problem is combinatorial in nature and the number of possible

assortments can be very large, particularly when there are many potential products to offer. In airline

and hotel revenue management settings, for example, the number of products can easily exceed 30 or

40, yielding 230 or 240 possible assortments. Therefore, it is important to classify when the problem is

polynomially solvable. When not, it is important to find solution methods with worst-case performance

guarantees. One of our main contributions is to classify the complexity of the assortment problem for

nested attraction models. We do this along two dimensions. The first dimension is the magnitude of the

nest dissimilarity parameters, which characterize the degree of dissimilarity of the products within a

nest. The second dimension is the presence or absence of the no purchase alternative within a nest. We

show that the only polynomially solvable case is when the nest dissimilarity parameters are less than one

and the no purchase alternative is only available at the time of selecting a nest. If the nest dissimilarity

parameters exceed one or the customers can choose a no purchase option after selecting a nest, then

we show that the problem is NP-hard. For the NP-hard cases, we develop tractable methods to obtain

assortments with worst-case performance guarantees.

Related Literature. Research on pricing in the context of the multinomial logit and nested

logit models has been fairly active. In that setting, the problem is to choose a set of prices for the

products, where the prices of all products jointly determine the probability that a customer purchases

a particular product. The objective is to maximize the expected revenue per customer. For the pricing

problem, Hanson and Martin (1996) notice that the expected revenue function fails to be concave in

prices for the multinomial logit model, but significant progress was made by formulating the pricing

problem in terms of market shares, as this results in a concave expected revenue function; see Song

and Xue (2007) and Dong et al. (2009). Li and Huh (2011) extend the concavity result to the nested

logit model by assuming that the price sensitivities of the products are constant within each nest and

the nest dissimilarity parameters are all between zero and one. They show that the expected revenue

maximization problem can be reduced to optimizing over a single variable. Gallego and Wang (2011)
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relax both of the assumptions in Li and Huh (2011) and extend the analysis to more general nested

attraction models. The key result is that the optimal prices add two terms to the unit costs, where the

first term is the inverse of the price sensitivities of the products and the second term is a nest-dependent

constant. This result implies that products with the same price sensitivity in a nest have the same

markup, irrespective of their quality.

In many situations, prices of the products are fixed and are not in the control of the decision maker,

at least not in the short run. For example, this situation holds in the context of revenue management,

where a menu of fares is designed to allow the same capacity to be sold at different prices. This is done by

differentiating the products by time-of-purchase, traveling restrictions, and the inclusion or exclusion

of ancillary services such as luggage handling, mileage accrual and advance seat selection. Revenue

managers must dynamically decide which set of products to offer depending on the state of the system,

which includes the time-to-departure and the remaining inventory. In retailing, pricing decisions are

often centralized, and hence, are fixed in advance, while assortment decisions can be made at the local

level. The assortment problem is particularly important at the design stage, where several products

could be built based on different design features and prices.

Assortment optimization is an active area of research, and our review of assortment optimization

problems focuses on papers that use attraction-based choice models, such as multinomial or nested logit

model. We refer the reader to Kok et al. (2008) and Farias et al. (2011) for assortment optimization

under other choice models. The paper by van Ryzin and Mahajan (1999) considers an assortment

optimization problem where the products both generate revenue and result in operational cost. The

objective is to balance the revenue benefit of offering product variety with the overhead cost of carrying

a large number of products. Cachon et al. (2005) extend this work to include product search costs, where

a customer may find an acceptable product in one store, but still not purchase hoping that another

store may carry a more desirable product. Mahajan and van Ryzin (2001) develop algorithms to set

stocking levels for multiple substitutable products.

If the customers choose according to the multinomial logit model, then the assortment optimization

problem can be solved efficiently as Talluri and van Ryzin (2004) show that the optimal assortment

includes a certain number of products with the largest revenues. We refer to assortments that include

a certain number of products with the largest revenues as nested-by-revenue assortments. The problem

becomes more complicated when more general choice models are considered. Rusmevichientong, Shmoys

and Topaloglu (2010) study the assortment problem under the mixed multinomial logit model, where

there are multiple customer types and customers of different types choose according to different

multinomial logit models. They show that the assortment optimization problem is NP-hard in the

weak sense even with two customer types and provide a performance guarantee for nested-by-revenue

assortments. Bront et al. (2009) show that the same problem is NP-hard in the strong sense and Mendez-

Diaz et al. (2010) give a branch-and-cut algorithm to find the optimal assortment. Rusmevichientong

and Topaloglu (2011) study the robust assortment problem under the multinomial logit model when

some of the parameters of the choice model are not known. Rusmevichientong, Shen and Shmoys

(2010) consider constraints on the size of the offered assortment when customers choose according to
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the multinomial logit model. Kok and Xu (2011) consider joint assortment optimization and pricing

problems under the nested logit model, where both the set of products offered and their corresponding

prices are decision variables. They work with two nest structures. In the first nest structure, customers

first select a brand, and then, a product type within the selected brand, whereas in the second nest

structure, customers first select a product type, and then, a brand for the selected product type. The

authors characterize the structure of the optimal solution, but the problem becomes difficult when the

number of brands is large or the product prices are fixed.

In this paper, we use the nested logit model to capture customer choices. There are several desirable

aspects of this choice model. To begin with, the nested logit model alleviates the independence of

irrelevant alternatives property suffered by the multinomial logit model; see Ben-Akiva and Lerman

(1997). In particular, if a product is added to the offered assortment, then the multinomial logit model

predicts that the market share of each product in the offered assortment decreases by the same relative

amount, which clearly should not occur when different products cannibalize on each other to different

extents. Furthermore, it is possible to show that the nested logit model is compatible with a random

utility-based choice model, where customers associate random utilities with the products and with the

option of not making a purchase and they follow the option providing the largest utility. This feature

gives some behavioral justification to the nested logit model; see Borsch-Supan (1990). Finally, the

nested logit model allows correlations between the utilities of the products, capturing the fact that the

way a customer evaluates a certain product may help us predict how this customer would evaluate other

similar products.

Beside its desirable aspects, the standard form of the nested logit model has some limitations. This

choice model works with a fixed nest structure, where customers first select a nest, and then, a product

within the selected nest. For example, nests may correspond to different airlines and products within a

nest may correspond to different cabin classes offered by an airline. However, not all customers follow

the same nest structure. Some customers may select an airline first, and then, a cabin class offered by

this airline, whereas some customers may select a cabin class first, and then, an airline that offers this

cabin class. Several extensions to the nested logit model are designed to alleviate this concern; see Train

(2003). In the mixed nested logit model, there are customers of multiple types and customers of different

types choose according to different nested logit models, possibly with different nest structures. In paired

combinatorial and cross nested logit models, a product may appear in multiple nests. In this paper,

we use the standard form of the nested logit model with a fixed nest structure. Bront et al. (2009)

show that the assortment problem is NP-hard under the mixed multinomial logit model and this result

carries over to the mixed nested logit model. Kok and Xu (2011) characterize the optimal assortment

under a mixed nested logit model with identical product prices.

Our Contributions. To our knowledge, there is no work on assortment optimization under the

nested logit model that can deal with a large number of nests. We consider four cases to characterize

the situations where our assortment optimization problem can be solved exactly or approximately. The

first case considers the situation where the dissimilarity parameters of the nests are less than one and

customers always make a purchase within the selected nest. This situation conforms to the standard
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form of the nested logit model; see Borsch-Supan (1990). For this case, we show that it is optimal to offer

a nested-by-revenue assortment within each nest, but this result does not immediately imply that the

problem is polynomially solvable since there are exponentially many combinations of nested-by-revenue

assortments we can choose for the different nests. We deal with this difficulty by giving a linear program

that finds the best combination of nested-by-revenue assortments for each nest. Thus, the problem is

tractable under the standard form of the nested logit model.

We show that the assortment optimization problem is NP-hard in all of the remaining cases. These

cases correspond to nonstandard versions of the nested logit model, but we justify the practical

importance of these cases. For the NP-hard cases, we give parsimonious collections of assortments

such that if we focus only on these assortments, then we obtain a solution with a certain worst-case

performance guarantee. In particular, the second case we consider focuses on the situation where the

dissimilarity parameters can take on any value, but the customers always purchase a product within

the selected nest. For this case, we show that if we focus only on nested-by-revenue assortments, then

assuming that the revenues of the products in the same nest differ by at most a factor of ρ and the

attractiveness parameters of the products in the same nest differ by at most a factor of κ, the expected

revenue from the best nested-by-revenue assortment cannot deviate from the optimal expected revenue

by more than a factor of min{ρ, 2κ}. Therefore, we can expect the nested-by-revenue assortments to

perform well when the revenues or the attractiveness of the products within a particular nest are not

too different from each other. It is important to emphasize that this result allows the revenues or the

attractiveness of the products to differ arbitrarily when the products are in different nests.

In the third case, we consider the situation where the dissimilarity parameters of the nests are less

than one, but customers may leave a chosen nest without purchasing. For this case, we construct a

small collection of assortments such that the best assortment within this collection provides an expected

revenue that deviates from the optimal expected revenue by no more than a factor of two. Finally,

the fourth case considers the most general problem instances with no restrictions on the dissimilarity

parameters of the nests and the no purchase behavior. For this case, we give a collection of assortments

such that the best assortment within this collection has a worst-case performance guarantee of 2κ, where

κ is as defined in the paragraph above. Furthermore, we exploit the connections of our assortment

problem to the partition problem to give a pseudo-polynomial-time algorithm for the most general

instances of our problem. Finally, using γ̄ to denote the largest dissimilarity parameter for the nests, for

any given δ > 1, we give a collection of assortments that provides a worst-case performance guarantee

of δ2max{γ̄,1}+1, but the work required to obtain this collection increases as δ gets close to one. Thus,

this result is akin to a polynomial-time approximation scheme when γ̄ is fixed. Table 1 summarizes the

four cases and indicates which sections in the paper include each one of these cases.

In addition to the worst-case performance guarantees, we formulate a convex program that yields

an upper bound on the optimal expected revenue. By comparing the upper bound on the optimal

expected revenue with the expected revenue provided by an assortment, we bound the optimality

gap of the assortment we obtain for a particular problem instance. We use this approach in our

computational experiments to test the performance of the solutions we obtain by focusing on the
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by offering a nested-by-revenue Worst-case performance guarantee of two

assortment in each nest
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Case 2: Section 4 Case 4: Section 6
Worst-case performance guarantee of Worst-case performance guarantee of 2κ,

min{ρ, 2κ} pseudo-polynomial-time algorithm, polynomial-time
approximation scheme for fixed γ̄

Table 1: Four cases considered in the paper. The ratio between the largest and the smallest product
revenues in a nest is bounded by ρ, the ratio between the largest and the smallest attractiveness
parameters in a nest is bounded by κ and the dissimilarity parameters are bounded by γ̄.

collections of assortments mentioned above. In this way, we characterize the problem parameters that

affect the solution quality and empirically demonstrate that the performance of the assortments we

propose follows the trends predicted by their worst-case performance guarantees.

Organization. In Section 1, we formulate the assortment optimization problem. In Section 2, we

give an alternative linear programming formulation of this problem. The number of constraints in this

formulation grows exponentially with the number of products within each nest, but we build on the

linear program to come up with a general approximation framework for the assortment optimization

problem. The following four sections focus on the four cases mentioned above. In Section 3, we assume

that the dissimilarity parameters of the nests are less than one and the customers always make a

purchase among the products of the selected nest. We show that it is optimal to offer a nested-by-revenue

assortment within each nest. In Section 4, we relax the assumption that the dissimilarity parameters are

less than one, whereas in Section 5, we allow customers to leave a selected nest without purchasing. In

these sections, we show that the assortment optimization problem becomes NP-hard under either

of these relaxations and we provide worst-case performance guarantees for certain collections of

assortments. In Section 6, we focus on the most general instances of the assortment optimization

problem with no restrictions on the dissimilarity parameters of the nests and the no purchase behavior

of the customers. Similar to the previous two sections, we give a collection of assortments with a

certain worst-case performance guarantee. Also, we give a pseudo-polynomial-time algorithm and a

polynomial-time approximation scheme. The performance guarantees we give in Sections 4, 5 and 6 are

based on the general approximation framework we develop in Section 2. In Section 7, we formulate a

convex program that provides an upper bound on the optimal expected revenue. In Section 8, we give

computational experiments. In Section 9, we conclude.

1 Problem Formulation

In this section, we describe the nested logit model that we use to model the customer choice,

and then, formulate our assortment optimization problem. There are m nests indexed by M =

{1, . . . ,m}. Depending on the application setting, each nest may represent a different category of

products, a different sales channel or a different retail store. There are n products that we can offer in
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each nest. We index the products in each nest by N = {1, . . . , n}. We use rij to denote the revenue

associated with product j in nest i. Without loss of generality, we assume that the products in each

nest are ordered such that ri1 ≥ ri2 ≥ . . . ≥ rin for all i ∈ M . We let vij be the preference weight of

product j in nest i and vi0 be the preference weight of the no purchase option in nest i. We use Vi(Si)

to denote the total preference weight of all available options when we offer the assortment Si ⊂ N in

nest i. In other words, we have Vi(Si) = vi0 +
∑

j∈Si
vij . Under the nested logit model, given that a

customer decides to purchase a product in nest i, if we offer the assortment Si in this nest, then the

probability that the customer purchases product j ∈ Si is given by

Pij(Si) =
vij

vi0 +
∑

k∈Si
vik

=
vij

Vi(Si)
.

We observe that the assumption that each nest includes the same number of products is without loss of

generality because if some nest i includes fewer than n products, then we can include additional products

j in this nest with preference weight vij = 0 and these products would never be purchased. Also, it is

possible to have vi0 = 0 for some nest i or even all nests, in which case, given that a customer selects

nest i, he never leaves without purchasing anything. We note that if vi0 = 0, then the expression for

Pij(∅) can evaluate to 0/0, but this does not pose any difficulty since if we offer the empty assortment

in nest i and vi0 = 0, then a customer would never decide to make a purchase in nest i and the value

of Pij(∅) becomes irrelevant.

Each nest i has a parameter γi ≥ 0 associated with it that characterizes the degree of the dissimilarity

of the products in the nest. Furthermore, we use v0 to denote the preference weight for the option of

not choosing any of the nests. If we offer the assortment (S1, . . . , Sm) over all nests, then a customer

chooses nest i with probability

Qi(S1, . . . , Sm) =
Vi(Si)

γi

v0 +
∑

l∈M Vl(Sl)γl
. (1)

We note that γi serves the purpose of dampening or magnifying the total preference weight of the

available options within nest i. We allow having v0 = 0. We note that if we have v0 = 0, we offer the

empty assortment in all nests and vi0 = 0 as well for all i ∈ M , then the expression for Qi(∅, . . . , ∅)
evaluates to 0/0, but this does not create any complication since if we offer the empty assortment in

all nests, then we trivially make an expected revenue of zero. Therefore, all of our development in the

paper applies to the case where some or all of the preference weights v0 and (v10, . . . , vm0) associated

with the no purchase options are equal to zero.

If we offer the assortment Si in nest i, then we can write the expected revenue we obtain from this

nest as

Ri(Si) =
∑
j∈Si

rij Pij(Si) =

∑
j∈Si

rij vij

Vi(Si)
,

with the interpretation that Ri(∅) = 0. Therefore, if we offer the assortment (S1, . . . , Sm) over all nests

with Si ⊂ N for all i ∈ M , then we obtain an expected revenue of

Π(S1, . . . , Sm) =
∑
i∈M

Qi(S1, . . . , Sm)Ri(Si).
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Our goal is to choose an assortment (S1, . . . , Sm) that maximizes the expected revenue over all nests,

yielding the assortment optimization problem

Z∗ = max
(S1,...,Sm):Si⊂N, i∈M

Π(S1, . . . , Sm). (2)

Throughout this paper, we classify the instances of the assortment optimization problem in (2)

along two dimensions. The first dimension is based on the values of the dissimilarity parameters

(γ1, . . . , γm) of the nests. Along this dimension, we separately consider the two cases where (i) we

have γi ≤ 1 for all i ∈ M , and (ii) there are no restrictions on the dissimilarity parameters. The

second dimension of classification is based on the values of the preference weights (v10, . . . , vm0) of the

no purchase options within the nests. Along this dimension, we separately consider the two cases where

(i) we have vi0 = 0 for all i ∈ M , and (ii) there are no restrictions on the preference weights of the no

purchase options. Since there are two cases to consider along each one of the two dimensions, we study

the assortment optimization problem in (2) under four cases. It turns out that while the assortment

optimization problem in (2) is polynomially solvable when γi ≤ 1 and vi0 = 0 for all i ∈ M , lifting any

one of these restrictions renders the problem NP-hard and we resort to approximation methods.

Along the first dimension, the case with γi ≤ 1 for all i ∈ M corresponds to the standard form

of the nested logit model studied by McFadden (1974) and McFadden (1981). In these papers, the

author notes that having γi ≤ 1 for all i ∈ M implies that the nested logit model is always compatible

with a random utility-based choice model, irrespective of the values of the preference weights of the

products and the preference weights of the no purchase options. In particular, McFadden (1981)

postulates three assumptions that need to be satisfied for the nested logit model to be compatible

with a random utility-based choice model and shows that these assumptions are always satisfied when

the nest dissimilarity parameters do not exceed one. Borsch-Supan (1990) revisits the compatibility of

the nested logit model with utility maximization principle and shows that even if we do not have γi ≤ 1

for all i ∈ M , the three assumptions postulated by McFadden (1981) can be satisfied for certain values

of the preference weights {vij : i ∈ M, j ∈ N}, {vi0 : i ∈ M} and v0. Therefore, the nested logit

model can still be compatible with a random utility-based choice model when we have γi ≥ 1 for some

i ∈ M . Similarly, Train (2003) notes that the preference weight vij of product j in nest i has the form

eūij/γi , where ūij is the mean utility of product j in nest i captured through a linear combination of its

attributes, such as price, quality and ease of use. He argues that even if the dissimilarity parameters

exceed one, the nested logit model can be compatible with utility maximization principle for certain

values of the mean utilities {ūij : i ∈ M, j ∈ N}. There are a number of empirical studies that fit

the nested logit model to customer choice data and end up with estimates for the nest dissimilarity

parameters exceeding one; see Train et al. (1987), Train et al. (1989), Lee (1999), Tiwari and Hasegawa

(2004) and Yates and Mackay (2006) applications in telephone service and housing choice. Train et al.

(1987) interpret a nest dissimilarity parameter exceeding one as a signal that substitution across nests

happens more readily than substitution within a nest.

Interestingly, using dissimilarity parameters that take on values larger than one allows us to model

synergistic, or halo, effects among the products within the same nest. In particular, under the nested
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logit model, if we offer the assortment (S1, . . . , Sm), then the probability that a customer purchases

product j ∈ Si in nest i is given by

Qi(S1, . . . , Sm)Pij(Si) =
Vi(Si)

γi−1

v0 +
∑

l∈M Vl(Sl)γl
vij .

From the expression above, we observe that when γi ≤ 1, adding a product k /∈ Si to nest i always

decreases the purchase probability of product j ∈ Si. Therefore, when the dissimilarity parameters of

the nests do not exceed one, the products in a nest always act as competitors to each other and adding

a new product to a nest decreases the probability of purchase for the other products in the nest. In

practice, this is not always the case. For example, if the nests correspond to different car dealers, then

offering a new luxury car may increase the probability of purchase for other cars in the same dealer

because the newly offered luxury car may help attract a larger fraction of customers. We observe that

if γi > 1 and we add a new product to nest i, then both Vi(Si)
γi−1 and

∑
l∈M Vl(Sl)

γl increase in the

expression above. As a result, the probability that a customer purchases product j may increase or

decrease. This feature may allow us to model synergies between different products in a nest. When

such synergies exist, it may even be beneficial to include loss leaders in a nest to attract traffic to this

nest. Motivated by this observation, we refer to the case with γi ≤ 1 for all i ∈ M as the case with purely

competitive products, whereas we refer to the case with no restrictions on the dissimilarity parameters

of the nests as the case with possibly synergistic products.

Along the second dimension, the case with vi0 = 0 for all i ∈ M corresponds to a situation where

if a customer decides to make a purchase within a particular nest, then the customer always makes a

purchase within the selected nest. In other words, the demand within a nest is fully captured without

loss to the no purchase option. We refer to this situation as the case with fully-captured nests. On

the other hand, if the preference weight of the no purchase option within a nest is strictly positive,

then a customer may leave without purchasing anything in the selected nest. We refer to this situation

as the case with partially-captured nests. There are a number of reasons to consider the case with

partially-captured nests. To begin with, firms do not make their assortment offer decisions in isolation

and the preference weight vi0 of the no purchase option in nest i can be used to capture the attractiveness

of the products offered by other firms in nest i. For example, if each nest corresponds to a particular

store, then the total preference weight of the products offered by all firms may serve to attract the

customers to a store, but once a customer decides to make a purchase in a particular store, he may

choose a product offered by another firm, which is equivalent to not making a purchase within the

offered assortment. As mentioned above, the assortment problem becomes NP-hard when we allow

partially-captured nests. Game theoretic assortment optimization models is beyond the scope of our

paper, but this computational complexity result also indicates that finding the best response of a firm

to the assortments already offered by other firms is a computationally difficult problem.

Another reason to consider the case with partially-captured nests is that there are extensions of the

nested logit model that allow offering a particular alternative within multiple nests. These extensions

are referred to as generalized nested logit models and Train (2003) shows that generalized nested logit

models are consistent with a random utility-based choice model. Our use of the partially-captured nests

corresponds to a version of generalized nested logit models where the no purchase option is offered
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within multiple nests. When we also impose the restriction that the dissimilarity parameters of all of

the nests are equal to each other, the resulting choice model is referred to as the cross nested logit

model. Farias et al. (2011) use the cross nested logit model to include a no purchase option within each

nest. The choice model in Farias et al. (2011) precisely corresponds to the partially-captured nests that

we consider in this paper.

A final reason to consider the case with partially-captured nests is that certain products may have

to be included in the offered assortment, in which case, the parameter vi0 can be used to capture the

total preference weight of the products that have to be included in the offered assortment. Naturally,

there is a revenue contribution associated with the products that have to be included in the offered

assortment and the definition of the expected revenue Ri(Si) above does not keep track of this revenue

contribution. However, it turns out that we can follow the same line of reasoning that we use to deal with

partially-captured nests to deal with the case where certain products have to be included in the offered

assortment. Thus, by building on our treatment of partially-captured nests, we can address assortment

optimization problems where certain products are already included in the offered assortment and we

need to decide which additional products should be offered.

In our nested logit model, the dissimilarity parameters (γ1, . . . , γm) are assumed to be constants. To

understand this assumption, it is useful to view the nested logit model as a random utility-based choice

model. In particular, consider the case where a customer associates random utilities with the products

and with the no purchase options. The random utilities have a multi-dimensional generalized extreme

value distribution. The utility of product j in nest i has mean ūij and unit variance. The utilities of

the options in different nests are independent of each other. The customer, being a utility maximizer,

follows the option with the largest utility. In this case, we can show that the probability of choosing

a particular product under this random utility-based choice model has the same form specified by

the nested logit model; see McFadden (1981). To obtain the nested logit model corresponding to this

random utility-based choice model, we need to set the preference weight vij of product j in nest i as

eūij/γi . The correlation structure between the random utilities of the options in nest i determines the

value of the dissimilarity parameter γi of nest i. Thus, the means and correlation structure of the

random utilities are the primitives of a random utility-based choice model that is consistent with the

nested logit model. In our nested logit model, we assume that the means and correlations of the random

utilities are fixed, implying that the preference weights and the dissimilarity parameters are fixed as

well. It is possible to consider richer choice models where the means and correlations of the random

utilities depend on the offered assortment, in which case, the preference weights and the dissimilarity

parameters depend on the offered assortment as well, but this extension makes it difficult to solve the

corresponding assortment optimization problem. We expand on this issue in Section 9.

2 Linear Programming Representation

The assortment optimization problem in (2) is of a combinatorial nature. In this section, we present a

linear programming formulation of this problem. The linear programming formulation is not too useful

directly as a computational tool since its number of constraints grows exponentially with the number of
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products. However, it turns out that we can build on the linear programming formulation to develop a

general approximation result for problem (2). The approximation methods that we propose throughout

the paper are tightly related to this general approximation result.

To formulate problem (2) as a linear program, we first observe that this problem is equivalent to

min{x : x ≥
∑

i∈M Qi(S1, . . . , Sm)Ri(Si) ∀ (S1, . . . , Sm) with Si ⊂ N, i ∈ M}. By using the definition

of Qi(S1, . . . , Sm) in (1), we can write the constraints in this problem as

v0 x ≥
∑
i∈M

(Vi(Si)
γiRi(Si)− Vi(Si)

γix) ∀ (S1, . . . , Sm) with Si ⊂ N, i ∈ M,

which, in turn, are equivalent to the single constraint

v0 x ≥ max
(S1,...,Sm):Si⊂N,i∈M

{∑
i∈M

Vi(Si)
γi(Ri(Si)− x)

}
.

The key observation is that the optimization problem on the right side of the constraint above

decomposes by the nests and the constraint can be written as

v0 x ≥
∑
i∈M

max
Si⊂N

Vi(Si)
γi(Ri(Si)− x).

Therefore, problem (2) is equivalent to

min x

s.t. v0 x ≥
∑
i∈M

max
Si⊂N

Vi(Si)
γi(Ri(Si)− x),

where the only decision variable is x. Noting that Z∗ is the optimal objective value of problem (2),

the discussion so far implies that if x∗ is the optimal solution to the problem above, then the optimal

objective value of this problem is also x∗ and we have x∗ = Z∗. The constraint of the problem above

is nonlinear, but to linearize this constraint, we can define the decision variables y = (y1, . . . , ym) as

yi = maxSi⊂N Vi(Si)
γi (Ri(Si)− x) and write the problem as

min x (3)

s.t. v0 x ≥
∑
i∈M

yi

yi ≥ Vi(Si)
γi(Ri(Si)− x) ∀Si ⊂ N, i ∈ M,

where the decision variables are (x, y). Problem (3) is a linear program with 1 +m decision variables

and 1 +m 2n constraints. When v0 = 0, the first constraint above reads
∑

i∈M yi ≤ 0, but the second

set of constraints prevent x from becoming arbitrarily small because if x becomes arbitrarily small,

then the decision variables (y1, . . . , ym) would take arbitrarily large values and we cannot satisfy the

constraint
∑

i∈M yi ≤ 0. Therefore, problem (3) continues to apply when the preference weight v0 of

the no purchase option is zero. Another useful observation is that the number of possible assortments

in problem (2) is 2mn, which increases exponentially in both the number of nests and the number of

products in each nest. In contrast, the numbers of decision variables and constraints in problem (3)
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grow linearly with the number of nests, and problem (3) can be tractable when the number of products

in each nest is relatively small, irrespective of the number of nests. When the number of products

in each nest is large, a possible solution approach for problem (3) is to use column generation on its

dual, but due to the presence of the dissimilarity coefficient in the second set of constraints, the column

generation subproblem is nonlinear and this renders column generation intractable.

Although problem (3) is difficult to solve when the number of products in each nest is large, we can

build on this problem to develop a general approximation method. Assume that we identify a collection

of candidate assortments {Ait : t ∈ Ti} that we may consider offering in nest i, where we have Ait ⊂ N

for all t ∈ Ti. We are interested in finding a combination of these assortments for the different nests

so that the combined assortment provides the largest possible expected revenue. In other words, we

are interested in finding the assortment that provides the largest expected revenue when we consider

assortments of the form (S1, . . . , Sm) with Si ∈ {Ait : t ∈ Ti} for all i ∈ M . This problem can be

formulated as the linear program

min x (4)

s.t. v0 x ≥
∑
i∈M

yi

yi ≥ Vi(Si)
γi(Ri(Si)− x) ∀Si ∈ {Ait : t ∈ Ti}, i ∈ M.

The number of decision variables in problem (4) is still 1+m. The number of constraints is 1+
∑

i∈M |Ti|,
which can be reasonable when the collections of candidate assortments are not too large.

We now provide some observations to develop a general approximation result by building on problem

(4). The constraints in problem (4) can succinctly be written as

v0 x ≥
∑
i∈M

max
Si∈{Ait : t∈Ti}

Vi(Si)
γi(Ri(Si)− x).

We will now argue that the constraint above must be satisfied as equality at an optimal solution. Let

(x̂, ŷ) be an optimal solution to problem (4) and suppose there is a gap. We can then decrease the value

of x̂ without violating the constraint, thereby obtaining a strictly better solution to problem (4) than x̂,

establishing the claim. Therefore, letting Ŝi be the solution to the maximization problem on the right

side of the constraint above with x = x̂, it must be the case that v0 x̂ =
∑

i∈M Vi(Ŝi)
γi(Ri(Ŝi) − x̂).

Solving for x̂, we obtain

x̂ =

∑
i∈M Vi(Ŝi)

γiRi(Ŝi)

v0 +
∑

i∈M Vi(Ŝi)γi
=

∑
i∈M

Qi(Ŝ1, . . . , Ŝm)Ri(Ŝi) = Π(Ŝ1, . . . , Ŝm).

Consequently, if (x̂, ŷ) is an optimal solution to problem (4) and Ŝi is an optimal solution to the problem

maxSi∈{Ait : t∈Ti} Vi(Si)
γi(Ri(Si) − x̂), then the expected revenue obtained by offering the assortment

(Ŝ1, . . . , Ŝm) is precisely x̂.

We observe that problem (4) includes only a subset of the constraints in problem (3), which implies

that problem (4) is a relaxed version of problem (3). Therefore, if we let (x∗, y∗) and (x̂, ŷ) respectively

be the optimal solutions to problems (3) and (4), then we have Z∗ = x∗ ≥ x̂. Furthermore, for some
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α and β, if we can show that (α x̂, β ŷ) is a feasible solution to problem (3), then we also obtain

α x̂ ≥ Z∗ = x∗ ≥ x̂, which implies that the expected revenue obtained by offering the assortment

(Ŝ1, . . . , Ŝm) as defined above deviates from the optimal expected revenue by no more than a factor of

α. We collect these observations in the following theorem.

Theorem 1 Let (x̂, ŷ) be an optimal solution to problem (4), and for all i ∈ M , let Ŝi be an optimal

solution to the problem

max
Si∈{Ait : t∈Ti}

Vi(Si)
γi(Ri(Si)− x̂). (5)

If (α x̂, β ŷ) is a feasible solution to problem (3) for some α and β, then the expected revenue obtained

by offering the assortment (Ŝ1, . . . , Ŝm) deviates from the optimal objective value of problem (2) by no

more than a factor of α. In other words, letting Ẑ = Π(Ŝ1, . . . , Ŝm), we have α Ẑ ≥ Z∗ ≥ Ẑ.

Theorem 1 provides sufficient conditions under which we can stitch together a good assortment from

the collections of candidate assortments {Ait : t ∈ Ti} for i ∈ M . The thought process we used to reach

Theorem 1 will be critical throughout the paper. In particular, we will design collections of assortments

such that if (x̂, ŷ) is the optimal solution to problem (4) with these collections of assortments, then

(α x̂, β ŷ) ends up being a feasible solution to problem (3) for some α and β. In that case, we can solve

problem (4) with these collections of assortments to obtain the optimal solution (x̂, ŷ). Letting Ŝi be the

assortment that solves problem (5), Theorem 1 implies that the expected revenue from the assortment

(Ŝ1, . . . , Ŝm) deviates from the optimal expected revenue by at most a factor of α.

We use various collections of candidate assortments. One possibility is to use the assortments that

include a certain number of products with the largest revenues. This class of assortments is known to be

optimal when the customer choices are governed by the multinomial logit model and Rusmevichientong,

Shmoys and Topaloglu (2010) give a performance guarantee for such assortments when the underlying

choice model is the multinomial logit model with multiple customer types. In the next section, we

show that this class of assortments is still optimal under the nested logit model as long as we only have

competitive products and fully-captured nests, but in general, we may need to look beyond this class

to find good solutions for the assortment optimization problem we are interested in.

3 Competitive Products and Fully-Captured Nests

In this section, we focus on instances of the assortment optimization problem in (2) with γi ≤ 1 and

vi0 = 0 for all i ∈ M . For this case, we show that there exists an optimal solution (S∗
1 , . . . , S

∗
m) to

problem (2) such that each one of the assortments S∗
1 , . . . , S

∗
m is either the empty assortment or is of

the form S∗
i = {1, 2, . . . , j} for some j ∈ N . Noting that the products in each nest are ordered such

that ri1 ≥ ri2 ≥ . . . ≥ rin, this result implies that an optimal assortment in each nest includes a certain

number of products with the largest revenues. We call such assortments nested-by-revenue assortments.

For notational brevity, we use Nij to denote the nested-by-revenue assortment that includes the first

j products with the largest revenues in nest i. In other words, we have Nij = {1, 2, . . . , j} for all
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i ∈ M , j ∈ N . For notational uniformity, we also let Ni0 = ∅ and N+ = N ∪ {0}, in which case, our

goal is to show that an optimal solution (S∗
1 , . . . , S

∗
m) to problem (2) is of the form S∗

i = Nij for some

j ∈ N+. Throughout this section, we assume without loss of generality that v0 > 0. Otherwise, since we

have vi0 = 0 for all i ∈ M , it is optimal to offer only one product with the largest revenue maxi∈M ri1

over all nests and this product would be purchased with probability one.

The following proposition shows that if it is optimal to offer a nonempty assortment in a nest, then

the expected revenue from this nest should at least be equal to the optimal expected revenue over all

nests.

Proposition 2 If (S∗
1 , . . . , S

∗
m) is an optimal solution to problem (2) and S∗

i ̸= ∅, then Ri(S
∗
i ) ≥ Z∗.

Proof. To get a contradiction, assume that S∗
i ̸= ∅ and Ri(S

∗
i ) < Z∗. For notational convenience, let

Rl = Rl(S
∗
l ) and ql = Vl(S

∗
l )

γl for all l ∈ M . Thus, we have Qi(S
∗
1 , . . . , S

∗
m) = qi/(v0 +

∑
l∈M ql) and

we can write the optimal expected revenue as

Z∗ = Π(S∗
1 , . . . , S

∗
m) =

∑
l∈M qlRl

v0 +
∑

l∈M ql
=

v0 +
∑

l∈M,l ̸=i ql

v0 +
∑

l∈M ql

∑
l∈M,l ̸=i qlRl

v0 +
∑

l∈M,l ̸=i ql
+

qiRi

v0 +
∑

l∈M ql

=
v0 +

∑
l∈M,l ̸=i ql

v0 +
∑

l∈M ql
Π(S∗

1 , . . . , S
∗
i−1, ∅, S∗

i+1, . . . , S
∗
m) +

qi
v0 +

∑
l∈M ql

Ri.

Noting that v0 > 0 and qi = Vi(S
∗
i )

γi > 0, the equality above shows that Z∗ is a nontrivial convex

combination of Π(S∗
1 , . . . , S

∗
i−1, ∅, S∗

i+1, . . . , S
∗
m) and Ri = Ri(S

∗
i ). So, having Ri < Z∗ implies that

Π(S∗
1 , . . . , S

∗
i−1, ∅, S∗

i+1, . . . , S
∗
m) > Z∗ contradicting the fact that Z∗ is the optimal expected revenue. 2

In the following lemma, we show that the products with small revenues can be removed from the

assortment without degrading the performance.

Lemma 3 Assume that Z = Π(S1, . . . , Sm) for some assortment (S1, . . . , Sm) and there exists a product

j ∈ Si that satisfies rij < γi Z + (1 − γi)Ri(Si) and Ri(Si) ≥ Z. Then, removing product j from Si

yields a strictly larger expected revenue than Z.

Proof. Let Ŝi be the assortment constructed by removing product j from Si. We show that the

assortment (S1, . . . , Si−1, Ŝi, Si+1, . . . , Sm) provides an expected revenue of Ẑ satisfying Ẑ > Z. For

notational convenience, let R̂i = Ri(Ŝi), q̂i = Vi(Ŝi)
γi , Rl = Rl(Sl) and ql = Vl(Sl)

γl for all l ∈ M .

Following an argument similar to the one in the proof of Proposition 2, we can write the expected

revenue from the assortment (S1, . . . , Sm) as

Z = Π(S1, . . . , Sm) =

∑
l∈M qlRl

v0 +
∑

l∈M ql
=

v0 +
∑

l∈M,l ̸=i ql + q̂i

v0 +
∑

l∈M ql

∑
l∈M,l ̸=i qlRl + q̂iR̂i

v0 +
∑

l∈M,l ̸=i ql + q̂i
+

qiRi − q̂iR̂i

v0 +
∑

l∈M ql

=
v0 +

∑
l∈M,l ̸=i ql + q̂i

v0 +
∑

l∈M ql
Π(S1, . . . , Si−1, Ŝi, Si+1, . . . , Sm) +

qi − q̂i
v0 +

∑
l∈M ql

qiRi − q̂iR̂i

qi − q̂i
.
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Therefore, Z is a convex combination of Ẑ = Π(S1, . . . , Si−1, Ŝi, Si+1, . . . , Sm) and (qiRi− q̂iR̂i)/(qi− q̂i).

In this case, the desired result follows if we can show that Z > (qiRi− q̂iR̂i)/(qi− q̂i). In the rest of the

proof, we equivalently show that qiRi − q̂iR̂i < (qi − q̂i)Z.

Let α = Vi(Ŝi)/Vi(Si), so q̂i = αγiqi. Using the fact that vij = Vi(Si)− Vi(Ŝi), we can write R̂i as

R̂i =

∑
k∈Ŝi

rik vik

Vi(Ŝi)
=

∑
k∈Si

rik vik − rij (Vi(Si)− Vi(Ŝi))

αVi(Si)
=

1

α
Ri −

1− α

α
rij .

Therefore, qiRi − q̂iR̂i < (qi − q̂i)Z holds if and only of

qiRi − αγiqi

[
1

α
Ri −

1− α

α
rij

]
< (qi − αγi qi)Z.

Arranging the terms in the expression above, we observe that qiRi − q̂iR̂i < (qi − q̂i)Z holds if and

only if rij < g(α)Z + (1− g(α))Ri, where g(α) = (1− αγi)/(αγi−1 − αγi). By the hypothesis, we have

rij < γi Z + (1− γi)Ri. So, it is enough to show that γi Z + (1− γi)Ri ≤ g(α)Z + (1− g(α))Ri. Since

both sides of the last inequality are convex combinations of Z and Ri and Z ≤ Ri by the hypothesis, the

inequality holds as long as g(α) ≤ γi. However, the last relationship is true because g(α) is increasing

in α when γi ≤ 1 and by L’Hopital’s rule, g(α) ≤ limα↑1 g(α) = γi. 2

Lemma 3 gives us a mechanism to remove certain products with small revenues without reducing

the expected revenue from an assortment. To see a useful implication of Proposition 2 and Lemma 3,

assume that (S∗
1 , . . . , S

∗
m) is an optimal solution to problem (2) with S∗

i ̸= ∅. We must have Ri(S
∗
i ) ≥ Z∗

by Proposition 2. In this case, we must have rij ≥ γi Z
∗ + (1 − γi)Ri(S

∗
i ) for all j ∈ S∗

i by Lemma

3. Otherwise, we can remove a product from S∗
i and obtain an assortment that provides a strictly

larger expected revenue than Z∗. We use this observation in the following theorem to show that

nested-by-revenue assortments provide an optimal solution to problem (2).

Theorem 4 There exists an optimal solution (S∗
1 , . . . , S

∗
m) to problem (2) such that, for all i ∈ M , we

have S∗
i = Nij for some j ∈ N+.

Proof. Assume that (S∗
1 , . . . , S

∗
m) is an optimal solution to problem (2) providing an expected revenue

of Z∗ and that there is a nest i such that S∗
i contains product j but not product k with k < j. Let

Ŝi be the assortment constructed by adding product k to S∗
i . Using Ẑ to denote the expected revenue

from the assortment (S∗
1 , . . . , S

∗
i−1, Ŝi, S

∗
i+1, . . . , S

∗
m), we show that Ẑ ≥ Z∗. Therefore, the assortment

(S∗
1 , . . . , S

∗
i−1, Ŝi, S

∗
i+1, . . . , S

∗
m) must also be optimal. Repeating the argument until the assortments for

all nests are of the form {1, 2, . . . , j} for some j ∈ N+ establishes the result.

Similar to the notation in the proof of Lemma 3, let R̂i = Ri(Ŝi), Ri = Ri(S
∗
i ), q̂i = Vi(Ŝi)

γi and

qi = Vi(S
∗
i )

γi . The main idea is to use an argument similar to the one in the proof of Lemma 3 to

write Ẑ = Π(S∗
1 , . . . , S

∗
i−1, Ŝi, S

∗
i+1, . . . , S

∗
m) as a convex combination of Z∗ and (q̂iR̂i−qiRi)/(q̂i−qi). In

this case, the desired result follows if we can show that Z∗ ≤ (q̂iR̂i − qiRi)/(q̂i − qi). We equivalently

show that (q̂i − qi)Z
∗ ≤ q̂iR̂i − qiRi. Let α = Vi(S

∗
i )/Vi(Ŝi), so q̂i = qi/α

γi . Using the fact that
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vik = Vi(Ŝi)− Vi(S
∗
i ), we write R̂i as

R̂i =

∑
j′∈Ŝi

rij′ vij′

Vi(Ŝi)
= α

∑
j′∈S∗

i
rij′ vij′ + rik (Vi(Ŝi)− Vi(S

∗
i ))

Vi(S∗
i )

= αRi + (1− α) rik.

Therefore, (q̂i − qi)Z
∗ ≤ q̂iR̂i − qiRi holds if and only if[ qi

αγi
− qi

]
Z∗ ≤ qi

αγi
(αRi + (1− α) rik)− qiRi.

Arranging the terms in the expression above, we observe that (q̂i−qi)Z
∗ ≤ q̂iR̂i−qiRi holds if and only

if h(α)Z∗+(1−h(α))Ri ≤ rik, where we let h(α) = (1−αγi)/(1−α). From the discussion that follows

Lemma 3, since j ∈ S∗
i , we know that γi Z

∗ + (1 − γi)Ri ≤ rij ≤ rik, where the last inequality follows

from the fact that k < j. So, it is enough to show that h(α)Z∗ + (1 − h(α))Ri ≤ γi Z
∗ + (1 − γi)Ri.

Since both sides of the last inequality are convex combinations of Z∗ and Ri and Z∗ ≤ Ri by Proposition

2, the inequality holds if and only if h(α) ≥ γi. However, the last relationship is true because h(α) is

decreasing in α and by L’Hoptial’s rule, h(α) ≥ limα↑1 h(α) = γi. 2

Theorem 4 shows that we can construct an optimal solution to problem (2) by only considering

the nested-by-revenue assortments. To find the best combination of such assortments for the different

nests, we can make use of problem (4). In particular, we replace the collection of candidate assortments

{Ait : t ∈ Ti} in problem (4) with the nested-by-revenue assortments {Nij : j ∈ N+} and solve problem

(4) to find the best combination of nested-by-revenue assortments for the different nests. By Theorem 4,

this best combination has to be an optimal solution to problem (2). In this way, we can find an optimal

solution to problem (2) by solving a linear program with 1 + m decision variables and 1 + m (1 + n)

constraints.

4 Possibly Synergistic Products and Fully-Captured Nests

In this section, we focus on instances of the assortment optimization problem in (2), where we do

not have any restrictions on the dissimilarity parameters (γ1, . . . , γm) of the nests, but we still have

vi0 = 0 for all i ∈ M . We show that allowing the dissimilarity parameters for the nests to take on

values larger than one changes the structure of problem (2) drastically. In particular, the result that

we establish in the previous section does not necessarily hold when the dissimilarity parameters of the

nests can take on arbitrary values and the nested-by-revenue assortments are no longer optimal. In

the next section, we first characterize the computational complexity of the problem when we have no

restrictions on the nest dissimilarity parameters. Following this result, we give a performance guarantee

for the nested-by-revenue assortments. Throughout this discussion, we assume that γi > 1 for some

i ∈ M . Otherwise, nested-by-revenue assortments are optimal by Theorem 4.

4.1 Computational Complexity

We begin by giving an example that shows why nested-by-revenue assortments are no longer optimal

when the dissimilarity parameters of the nests can take on values larger than one. This example also

demonstrates that nested-by-revenue assortments can perform arbitrarily badly when the revenues and
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the preference weights of the products in a nest drastically differ from each other. Following this

example, we establish that the assortment optimization problem in (2) is NP-hard whenever we allow

γi > 1 for some i ∈ M .

To give an example where nested-by-revenue assortments do not perform well, we consider an

instance of problem (2) with a single nest. The preference weight for the option of not choosing any

of the nests is v0 = 1. The dissimilarity parameter of the nest is γ1 = 2. There are three products

in the nest. Letting ε ≤ 1 be a small positive number, the following table gives the revenues and the

preference weights associated with the three products.

Product 1 2 3

Revenue 1 ε4 0
Preference Weight ε2 3/ε2 1/ε

Since there is only one nest with γ1 = 2, the expected revenue from an assortment S1 ⊂ {1, 2, 3} is

Π(S1) = Q1(S1)R1(S1) =
V1(S1)

2

v0 + V1(S1)2

∑
j∈S1

r1j v1j

V1(S1)
=

V1(S1)
∑

j∈S1
r1j v1j

v0 + V1(S1)2
.

We compute and bound the expected revenues from the three nested-by-revenue assortments as

Π({1}) = ε2 ε2

1 + (ε2)2
≤ ε4

Π({1, 2}) = (ε2 + 3/ε2) (ε2 + 3 ε2)

1 + (ε2 + 3/ε2)2
≤ (4/ε2) 4 ε2

9/ε4
=

16

9
ε4

Π({1, 2, 3}) = (ε2 + 3/ε2 + 1/ε) (ε2 + 3 ε2)

1 + (ε2 + 3/ε2 + 1/ε)2
≤ (5/ε2) 4 ε2

9/ε4
=

20

9
ε4,

which implies that the expected revenue from the best nested-by-revenue assortment is no larger than
20
9 ε4. On the other hand, the expected revenue from the assortment {1, 3} is given by

Π({1, 3}) = (ε2 + 1/ε) (ε2)

1 + (ε2 + 1/ε)2
≥ (1/ε) ε2

1 + (1/ε+ 1/ε)2
≥ ε

1/ε2 + (1/ε+ 1/ε)2
=

1

5
ε3.

Thus, the optimal expected revenue exceeds the expected revenue from the best nested-by-revenue

assortment by at least a factor of (ε3/5)/(209 ε4) = 9/(100 ε). As ε → 0, the performance of the best

nested-by-revenue assortment becomes arbitrarily poor. The key observation in this problem instance

is that the revenue associated with product 1 is quite large when compared with the other product

revenues. Therefore, we would like to be able to sell product 1 with high probability. One can check

that if we offer product 1 by itself, then the probability of purchase for product 1 is between ε4/2 and

ε4. On the other hand, if we offer products 1 and 2 together, then the probability of purchase for product

1 is always smaller than ε4/2. Therefore, if we offer product 2 next to product 1, then the probability

of purchase for product 1 goes down. In contrast, if we offer products 1 and 3, then it is possible to

check that the probability of purchase for product 1 always exceeds ε3/5, which is larger than ε4 for

small values of ε. This observation indicates that product 3 acts as a synergistic product to product 1

and offering product 3 next to product 1 increases the probability of purchase for product 1. We also
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note that even if the revenue of product 3 was not zero but slightly negative, it would still be beneficial

to add this product to the offered assortment, justifying a loss leader.

It turns out that if we allow the dissimilarity parameters of the nests to take on values larger than

one, then not only the nested-by-revenue assortments cease to be optimal, but problem (2) becomes

NP-hard. We devote the rest of this section to showing this result. To show the result we are interested

in, we focus on the following decision-theoretic formulation of the assortment optimization problem.

Assortment Feasibility. Given a profit threshold K, is there an assortment (S1, . . . , Sm) that provides

an expected revenue of K or more for problem (2)?

To establish the NP-hardness of problem (2), Theorem 5 below shows that any instance of the

partition problem, which is a well-known NP-hard problem as established in Garey and Johnson (1979),

can be reduced to an instance of the assortment feasibility problem. Rusmevichientong, Shmoys and

Topaloglu (2010) also use a reduction from the partition problem to show the NP-hardness of an

assortment optimization problem, but their choice model is the multinomial logit model with multiple

customer types, rather than the nested logit model. The partition problem is described as follows.

Partition. Given integer-valued sizes (c1, . . . , cn) such that
∑n

j=1 cj = 2T with T integer, can we find a

subset S ⊂ {1, . . . , n} such that
∑

j∈S cj =
∑

j∈{1,...,n}\S cj = T?

Theorem 5 If we allow the dissimilarity parameters for the nests to take on values larger than one,

then the assortment feasibility problem is NP-hard.

Proof. Assume that we are given any instance of the partition problem with sizes (c1, . . . , cn) and∑n
j=1 cj = 2T . We define an instance of the assortment feasibility problem as follows. There is only

one nest. The preference weight for the option of not choosing any of the nests is v0 = (1 + T )2. The

dissimilarity parameter of the nest is γ1 = 2. There are n + 1 products in the nest. The revenue

associated with the first n products is given by r1j = 0 for all j = 1, . . . , n. The revenue associated

with the last product is r1,n+1 = 2 (1 + T ). The preference weights of the first n products are given by

v1j = cj for all j = 1, . . . , n. The preference weight associated with the last product is v1,n+1 = 1. We

set the expected revenue threshold in the assortment feasibility problem as K = 1.

In the rest of the proof, we show that there exists an assortment that provides an expected revenue

of K or more in the assortment feasibility problem if and only if there exists a subset S ⊂ {1, . . . , n}
such that

∑
j∈S cj = T . The first observation that if we want to get a positive expected revenue in the

assortment feasibility problem, then we have to offer the last product with revenue 2 (1+T ). Therefore,

the only question for the assortment feasibility problem is to choose a subset S among the products

with zero revenues that makes sure that we obtain an expected revenue of K = 1 or more. If we

offer a subset S of the first n products together with the last product, then the expected revenue is

Q1(S ∪ {n+ 1})R1(S ∪ {n+ 1}), which evaluates to

(
∑

j∈S cj + 1)2

(1 + T )2 + (
∑

j∈S cj + 1)2
2 (1 + T )

(
∑

j∈S cj + 1)
.
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Therefore, there exists an assortment with an expected revenue of K = 1 or more if and only if

(
∑

j∈S cj + 1) 2 (1 + T )

(1 + T )2 + (
∑

j∈S cj + 1)2
≥ 1.

Arranging the terms in the expression above, the inequality above is equivalent to

2 (1 + T )
∑
j∈S

cj + 2 (1 + T ) ≥ 1 + 2T + T 2 + 1 + 2
∑
j∈S

cj +
(∑

j∈S
cj

)2
,

which can equivalently be written as(∑
j∈S

cj

)2
− 2T

∑
j∈S

cj + T 2 ≤ 0.

Since the last inequality is equivalent to (
∑

j∈S cj−T )2 ≤ 0, there exists an assortment with an expected

revenue of K = 1 or more if and only if there exists a subset S with (
∑

j∈S cj − T )2 ≤ 0. However, the

only way for the last inequality to hold is to have
∑

j∈S cj = T . Therefore, finding an assortment that

yields an expected revenue of K or more is equivalent to finding a subset S that satisfies
∑

j∈S cj = T

and the latter statement is precisely what the partition problem is interested in. 2

4.2 Performance of Nested-by-Revenue Assortments

In the previous section, we show that nested-by-revenue assortments may not perform well when we

allow the dissimilarity parameters of the nests to take on values larger than one. Our goal in this section

is to develop a performance bound for this class of assortments as a function of the problem data. In

particular, recalling that we use Nij to denote the nested-by-revenue assortment that includes the first

j products with the largest revenues in nest i, we show that by focusing only on the nested-by-revenue

assortments, we can construct a solution to problem (2) whose expected revenue deviates from the

optimal expected revenue by no more than a factor of

max
i∈M,j=2,...,n

{
Ri(Ni,j−1)

Ri(Nij)
∧ Ri(Nij)

Ri(Ni,j−1)

Vi(Nij)
γi

Vi(Ni,j−1)γi

}
, (6)

where we let a ∧ b = min{a, b}. Before we show this result, it is useful to observe the implications of

this performance guarantee.

To see the effect of the first term in the minimum operator in (6), assume that the revenues

of the products within a nest are balanced in the sense that the largest and the smallest product

revenues within a nest differ from each other by at most a factor of ρ. Since the preference

weights of the no purchase options within the nests are zero, Ri(·) is always smaller than the largest

product revenue in nest i and is always larger than the smallest product revenue. Therefore, the

ratio Ri(Nij)/Ri(Ni,j−1) in the expression above cannot exceed ρ. This observation implies that we

expect the nested-by-revenue assortments to perform well when the revenues of the products within

a particular nest are balanced. Note that the revenues of the products in different nests can still

differ from each other arbitrarily. On the other hand, if we assume that the preference weights of the
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products within a nest are balanced in the sense that the largest and the smallest preference weights

within a nest differ from each other by at most a factor of κ, then we obtain Ri(Ni,j−1)/Ri(Nij) =

(
∑j−1

k=1 rik vik/
∑j

k=1 rik vik) (
∑j

k=1 vik/
∑j−1

k=1 vik) ≤
∑j

k=1 vik/
∑j−1

k=1 vik = Vi(Nij)/Vi(Ni,j−1). Since

the assortments Nij and Ni,j−1 respectively include j and j − 1 products, the ratio Vi(Nij)/Vi(Ni,j−1)

is bounded from above by (jκ)/(j − 1) and the latter expression does not exceed 2κ for any

j = 2, . . . , n. Therefore, (6) indicates that the nested-by-revenue assortments provide a performance

guarantee of 2κ as well, implying that these assortments are also expected to perform well when the

preference weights of the products within a nest do not differ from each other drastically. Similar to the

discussion for the product revenues, the preference weights of the products in different nests can still

differ from each other arbitrarily. To see the effect of the second term in the minimum operator in (6),

we observe that the expression in the curly brackets in (6) takes its largest value when the two terms

of the minimum operator are equal to each other and this happens when

Ri(Ni,j−1)

Ri(Nij)
=

Vi(Nij)
γi/2

Vi(Ni,j−1)γi/2
.

Therefore, the value of the minimum operator in (6) is bounded from above by the expression on the

right side above. Noting that we have Vi(Nij)
γi/2/Vi(Ni,j−1)

γi/2 ≤ (2κ)γi/2, the performance guarantee

we give for nested-by-revenue assortments cannot exceed maxi∈M (2κ)γi/2 either. When γi ≤ 2 for all

i ∈ M , the latter performance guarantee is better than 2κ.

We make use of Theorem 1 to establish the performance guarantee that we give in (6). Assume

that we solve problem (4) after replacing the collection of candidate assortments {Ait : t ∈ Ti} in the

second set of constraints with the nested-by-revenue assortments {Nij : j ∈ N+}. Letting (x̂, ŷ) be the

optimal solution we obtain in this fashion and using α to denote the expression in (6), if we can show

that (α x̂, α ŷ) is a feasible solution to problem (3), then Theorem 1 implies that we can focus only on

nested-by-revenue assortments and still obtain an assortment whose expected revenue deviates from the

optimal expected revenue by no more than a factor of α.

To pursue this line of reasoning, we note that the second set of constraints in problem (3) can

be written as yi ≥ maxSi⊂N Vi(Si)
γi(Ri(Si) − x) for all i ∈ M . Using the decision variables zi =

(zi1, . . . , zin) ∈ [0, 1]n, we formulate a tighter version of problem (3) as

min x (7)

s.t. v0 x ≥
∑
i∈M

yi

yi ≥ max
zi∈[0,1]n

{(∑
j∈N

vij zij

)γi

[∑
j∈N rij vij zij∑
j∈N vij zij

− x

]}
∀ i ∈ M.

Note that if we imposed the constraint zi ∈ {0, 1}n in the maximization problem on the right side of the

second set of constraints above, then problems (3) and (7) would be equivalent to each other. The way

it is formulated, problem (3) is a relaxed version of problem (7) in the sense that any feasible solution

(x, y) to problem (7) is also feasible to problem (3). In the following lemma, we study the optimal

solution to the maximization problem on the right side of the second set of constraints above.
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Lemma 6 There exists an optimal solution z∗i to the problem

max
zi∈[0,1]n

{(∑
j∈N

vij zij

)γi

[∑
j∈N rij vij zij∑
j∈N vij zij

− x

]}
(8)

such that z∗i1 = 1, z∗i2 = 1, . . . , z∗i,k−1 = 1, z∗ik ∈ [0, 1], z∗i,k+1 = 0, . . . , z∗in = 0 for some k = 1, . . . , n.

Proof. Assume that ẑi is an optimal solution to problem (8) and let C =
∑

j∈N vij ẑij . In this case,

note that an optimal solution to the continuous knapsack problem

max

{∑
j∈N

rij vij zij :
∑
j∈N

vij zij = C, zi ∈ [0, 1]n

}

is also an optimal solution to problem (8). In the continuous knapsack problem above, the utility of item

j is rij vij and the space consumption of item j is vij . Thus, we can solve this problem by sorting the

products with respect to their utility-to-space consumption ratios and filling the knapsack starting from

the item with the largest utility-to-space consumption ratio. Since the utility-to-space consumption

ratio of item j is rij and the products are ordered such that ri1 ≥ ri2 ≥ . . . ≥ rin, there exists an

optimal solution to the continuous knapsack problem above with the form given in the lemma. 2

Except for at most one possible fractional component, Lemma 6 shows that a nested-by-revenue

assortment is optimal for the maximization problem on the right side of the second set of constraints

in problem (7). Thus, it is not too surprising that if we solve problem (4) after replacing the collection

of candidate assortments {Ait : t ∈ Ti} in the second set of constraints with the nested-by-revenue

assortments {Nij : j ∈ N+} and obtain the optimal solution (x̂, ŷ), then (x̂, ŷ) is almost feasible to

problem (7). Since problem (3) is a relaxed version of problem (7), the solution (x̂, ŷ) would be almost

feasible to problem (3) as well. We make this intuitive argument precise in the following theorem and

show that nested-by-revenue assortments provide the performance guarantee that we give in (6). We

defer the proof of this result to the appendix.

Theorem 7 Let (x̂, ŷ) be an optimal solution to problem (4) when we solve this problem after replacing

the collection of candidate assortments {Ait : t ∈ Ti} in the second set of constraints with the nested-

by-revenue assortments {Nij : j ∈ N+}. Then, using α to denote the expression in (6), (α x̂, α ŷ) is a

feasible solution to problem (3).

Theorem 7, along with Theorem 1, shows that if we only consider the nested-by-revenue assortments

as candidate assortments, then we can construct a solution to problem (2) whose expected revenue

deviates from the optimal expected revenue by at most a factor given in (6). Similar to the discussion at

the end of Section 3, to find the best combination of nested-by-revenue assortments, we can solve problem

(4) after replacing the collection of candidate assortments {Ait : t ∈ Ti} with the nested-by-revenue

assortments {Nij : j ∈ N+}. This amounts to solving a linear program with 1 +m decision variables

and 1 +m (1 + n) constraints.
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5 Competitive Products and Partially-Captured Nests

In this section, we consider instances of the assortment optimization problem in (2) with γi ≤ 1 for all

i ∈ M , but the preference weights of the no purchase options within the nests can take on arbitrary

values. In other words, we allow (v10, . . . , vm0) to take on strictly positive values so that a customer

can leave without purchasing anything even after this customer chooses a particular nest. For this case,

nested-by-revenue assortments are no longer optimal. As a matter of fact, problem (2) turns out to be

NP-hard. However, we are able to characterize a small class of assortments such that if we focus on this

class of assortments, then we can construct a solution to problem (2) whose expected revenue deviates

from the optimal expected revenue by no more than a factor of two.

In the following theorem, we show that the assortment optimization problem in (2) is NP-hard when

we have vi0 > 0 for some i ∈ M . Our proof technique is similar to the one in Section 4.1. We consider

the assortment feasibility problem as defined in Section 4.1 and show that any instance of the partition

problem can be reduced to an instance of the assortment feasibility problem. However, the specifics of

the reduction are more involved and we give the proof of this theorem in the appendix.

Theorem 8 If we allow the preference weights of the no purchase options within the nests to take on

strictly positive values, then the assortment feasibility problem is NP-hard.

The difficulty with partially-captured nests is that such nests do not allow Proposition 2 to hold,

which implies that it may be optimal to offer a nonempty assortment in a partially-captured nest

even if the expected revenue from this nest is below the optimal expected revenue. As a result, our

line of reasoning in Section 3 does not hold. It is possible to show that if we have a mixture of

partially-captured and fully-captured nests, then it is still optimal to offer nested-by-revenue assortments

in the fully-captured nests, but it is not clear what to do for the partially-captured ones. Motivated

by the computational complexity result in Theorem 8, we turn our attention to obtaining approximate

solutions. In this section, we develop a tractable approach that obtains a solution to problem (2) whose

expected revenue deviates from the optimal expected revenue by at most a factor of two. To that end,

we use an alternative representation of problem (3). Using the decision variables zi = (zi1, . . . , zin), we

define Ki(ϵi) as the optimal objective value of the knapsack problem

Ki(ϵi) = max

{∑
j∈N

rij vij zij :
∑
j∈N

vij zij ≤ ϵi, zi ∈ {0, 1}n
}
. (9)

In this case, noting that Vi(Si) and Ri(Si) in the second set of constraints in problem (3) are respectively

given by Vi(Si) = vi0 +
∑

j∈Si
vij and Ri(Si) =

∑
j∈Si

rij vij/Vi(Si), we consider the problem

min x (10)

s.t. v0 x ≥
∑
i∈M

yi

yi ≥ max
ϵi≥0

{
(vi0 + ϵi)

γi

[
Ki(ϵi)

vi0 + ϵi
− x

]}
∀ i ∈ M.

The following lemma shows that problem (10) is equivalent to problem (3).
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Lemma 9 Problems (3) and (10) are equivalent to each other in the sense that an optimal solution to

one problem is also an optimal solution to the other.

Proof. Noting that the second set of constraints in problem (3) can equivalently be written as yi ≥
maxSi⊂N Vi(Si)

γi(Ri(Si)− x) for all i ∈ M , the result follows if we can show that

max
Si⊂N

Vi(Si)
γi(Ri(Si)− x) = max

ϵi≥0

{
(vi0 + ϵi)

γi

[
Ki(ϵi)

vi0 + ϵi
− x

]}
for any x ≥ 0. Let ζ∗L and ζ∗R respectively be the optimal objective values of the problems on the left

and right side above. First, we show that ζ∗L ≤ ζ∗R. Assume that S∗
i is an optimal solution to the

problem on the left side above and define ϵ∗i =
∑

j∈S∗
i
vij . The solution obtained by setting zij = 1 for

all j ∈ S∗
i and zij = 0 otherwise is a feasible solution to problem (9) with ϵi = ϵ∗i , which implies that

Ki(ϵ
∗
i ) ≥

∑
j∈S∗

i
rij vij . Thus, if we evaluate the objective value of the problem on the right side above

at ϵi = ϵ∗i , then we obtain at least ζ∗L, in which case, we obtain ζ∗R ≥ ζ∗L.

Second, we show that ζ∗L ≥ ζ∗R. Let ϵ
∗
i be an optimal solution to the problem on the right side above

and solve problem (9) after setting ϵi = ϵ∗i . Letting z∗i be the solution we obtain, we observe that we can

assume without loss of generality that
∑

j∈N vij z
∗
ij = ϵ∗i . To see this claim, if we have

∑
j∈N vij z

∗
ij < ϵ∗i ,

then we can decrease the value of ϵ∗i to ϵ̂i =
∑

j∈N vij z
∗
ij while still preserving Ki(ϵ

∗
i ) = Ki(ϵ̂i). In this

case, using the fact that γi ≤ 1 and x ≥ 0, we obtain

(vi0 + ϵ∗i )
γi

[
Ki(ϵ

∗
i )

vi0 + ϵ∗i
− x

]
=

Ki(ϵ
∗
i )

(vi0 + ϵ∗i )
1−γi

− (vi0 + ϵ∗i )
γix

≤ Ki(ϵ̂i)

(vi0 + ϵ̂i)1−γi
− (vi0 + ϵ̂i)

γix = (vi0 + ϵ̂i)
γi

[
Ki(ϵ̂i)

vi0 + ϵ̂i
− x

]
,

which shows that ϵ̂i should also be an optimal solution to the problem on the right side above,

establishing the claim. By using the solution z∗i , we define the assortment S∗
i as S∗

i = {j ∈ N : z∗ij = 1}.
Since

∑
j∈S∗

i
vij =

∑
j∈N vij z

∗
ij = ϵ∗i and

∑
j∈S∗

i
rij vij =

∑
j∈N rij vij z

∗
ij = Ki(ϵ

∗
i ), the assortment S∗

i

provides an objective value of ζ∗R for the problem on the left side above and we obtain ζ∗L ≥ ζ∗R. 2

To exploit the equivalence between problems (3) and (10) in a tractable fashion, we use the

continuous relaxation of the knapsack problem in (9), which is given by

K̂i(ϵi) = max

{∑
j∈N

rij vij zij :
∑
j∈N

vij zij ≤ ϵi, 0 ≤ zij ≤ 1(vij ≤ ϵi) ∀ j ∈ N

}
, (11)

where we use 1(·) to denote the indicator function. Since problem (11) is a relaxation of problem (9),

we have K̂i(ϵi) ≥ Ki(ϵi). The problem above is a continuous knapsack problem, where the utility of

item j is rij vij , the space consumption of item j is vij and we can only consider the items whose space

consumptions do not exceed ϵi. Noting that the utility-to-space consumption ratio of item j is rij , we can

solve this problem by sorting the products with respect to their revenues and filling the knapsack starting

from the product with the largest revenue, as long as we only consider the products whose preference

weights do not exceed ϵi. We let ẑi(ϵi) = (ẑi1(ϵi), . . . , ẑin(ϵi)) be an optimal solution to problem (11)
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that we obtain in this fashion. We observe that ẑi(ϵi) has at most one fractional component. By using

this solution, we define the assortment Ŝi(ϵi) as Ŝi(ϵi) = {j ∈ N : ẑij(ϵi) = 1}, which includes only the

strictly positive and integer-valued components of ẑi(ϵi). We use the assortments {Ŝi(ϵi) : ϵi ∈ [0,∞]}
as a collection of candidate assortments for nest i. We shortly show in this section that this collection

of assortments includes no more than 1 + n2 assortments and each one of these 1 + n2 assortments can

be identified in a tractable fashion.

To be able to obtain the performance guarantee of two, we augment the collection of assortments

{Ŝi(ϵi) : ϵi ∈ [0,∞]} for nest i by the collection of singleton assortments {{j} : j ∈ N}. We solve

problem (4) after replacing the collection of candidate assortments {Ait : t ∈ Ti} in the second set of

constraints with the collection of assortments {Ŝi(ϵi) : ϵi ∈ [0,∞]} ∪ {{j} : j ∈ N}. Letting (x̂, ŷ) be

the optimal solution to problem (4) that we obtain in this fashion, if we can show that (2 x̂, 2 ŷ) is a

feasible solution to problem (3), then Theorem 1 implies that we can focus only on the assortments

{Ŝi(ϵi) : ϵi ∈ [0,∞]} ∪ {{j} : j ∈ N} for nest i and still obtain an assortment whose expected revenue

deviates from the optimal expected revenue by no more than a factor of two. We pursue this result in

the following theorem, but defer the proof of this result to the appendix.

Theorem 10 Let (x̂, ŷ) be an optimal solution to problem (4) when we solve this problem after replacing

the collection of candidate assortments {Ait : t ∈ Ti} in the second set of constraints with the assortments

{Ŝi(ϵi) : ϵi ∈ [0,∞]} ∪ {{j} : j ∈ N}. Then, (2 x̂, 2 ŷ) is a feasible solution to problem (3).

The equivalence between problems (3) and (10) given in Lemma 9 lays out the connection between

the assortment optimization problem we are interested in and the knapsack problem, as long as we have

γi ≤ 1 for all i ∈ M . It is well-known that one can construct a solution to the knapsack problem in (9)

by using its continuous relaxation in (11) and the objective value of this solution would deviate from

the optimal objective value of the knapsack problem by no more than a factor of two; see Williamson

and Shmoys (2011). The proof of Theorem 10 implicitly makes use of this result. Similarly, there

exists a well-known fully polynomial-time approximation scheme for the knapsack problem, which can

be found in Williamson and Shmoys (2011). Building on this fully polynomial-time approximation

scheme, it is indeed possible to develop a fully polynomial-time approximation scheme for the assortment

optimization problem we are interested in. We do not pursue the fully polynomial-time approximation

scheme because this scheme can be developed by using an argument that is very similar to the preceding

discussion in this section. The only difference is that instead of constructing approximate solutions to

the knapsack problem in (9) by using its continuous relaxation, we construct approximate solutions by

using the fully polynomial-time approximation scheme for knapsack problems.

In the remainder of this section, we argue that the collection of assortments {Ŝi(ϵi) : ϵi ∈ [0,∞]}
includes no more than 1+n2 assortments and each one of these 1+n2 assortments can be identified in a

tractable fashion. Fix ϵi and consider the assortment Ŝi(ϵi). The definition of ẑi(ϵi) implies that Ŝi(ϵi)

is a nested-by-revenue assortment as long as we focus only on the products whose preference weights

do not exceed ϵi. In other words, letting k be the number of products whose preference weights do not

exceed ϵi, Ŝi(ϵi) is a nested-by-revenue assortment as long as we focus only on the products with the k
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smallest preference weights. Given that we focus only on the products with the k smallest preference

weights, we use Nk
ij to denote the nested-by-revenue assortment that includes the first j products with

the largest revenues in nest i. Therefore, Ŝi(ϵi) must be one of the assortments {Nk
ij : j = 0, . . . , k},

where we let Nk
i0 = ∅ for notational uniformity. Since the only possible values for k are k = 1, . . . , n, it

follows that {Ŝi(ϵi) : ϵi ∈ [0,∞]} ⊂ {Nk
ij : k ∈ N, j = 0, . . . , k}. The latter collection of assortments

includes no more than 1 + n2 distinct assortments, all of which can be easily be identified.

Theorem 10 shows that if we use the assortments {Ŝi(ϵi) : ϵi ∈ [0,∞]} ∪{{j} : j ∈ N} as a collection

of candidate assortments for nest i, then we can stitch together from these candidate assortments a

solution to problem (2) whose expected revenue deviates from the optimal expected revenue by at most

a factor of two. Since we have {Ŝi(ϵi) : ϵi ∈ [0,∞]} ⊂ {Nk
ij : k ∈ N, j = 0, . . . , k}, using the assortments

{Nk
ij : k ∈ N, j = 0, . . . , k} ∪ {{j} : j ∈ N} as candidate assortments for nest i cannot degrade

the performance guarantee of two. To find the best combination of these assortments, we can solve

problem (4) after replacing the collection of candidate assortments {Ait : t ∈ Ti} with the assortments

{Nk
ij : k ∈ N, j = 0, . . . , k} ∪ {{j} : j ∈ N}. This amounts to solving a linear program with 1 + m

decision variables and 1 +m (1 + n+ n2) constraints.

6 Possibly Synergistic Products and Partially-Captured Nests

In this section, we consider the most general instances of the assortment optimization problem in (2),

where we do not have any restrictions on the dissimilarity parameters (γ1, . . . , γm) of the nests and

the preference weights (v10, . . . , vm0) of the no purchase options within the nests. We establish three

results for these most general instances. First, we show that if the largest and the smallest preference

weights within a nest do not differ from each other by more than a factor of κ, then the collection of

assortments developed in the previous section provides a performance guarantee of 2κ. Second, using the

links of our assortment problem to the partition problem, we give a pseudo-polynomial-time algorithm

to obtain the optimal assortment. Third, letting γ̄ = maxi∈M γi for notational brevity, for any given

δ > 1, we construct a collection of assortments that provides a performance guarantee of δ2γ̄+1, but the

computational work required to obtain this collection increases as δ gets close to one. The important

point about the last result is that it allows us to choose δ close to one to obtain an assortment with an

arbitrarily good performance guarantee, but choosing δ close to one also increases the computational

work. So, this result allows us to tradeoff computational work with performance guarantee. Throughout

this section, we assume that γ̄ > 1. Otherwise, we can use the ideas in the previous section.

6.1 Performance Guarantee

We begin by showing that if the largest and the smallest preference weights within a nest differ from each

other by at most a factor of κ, then the collection of assortments that we develop in the previous section

provides a performance guarantee of 2κ. It turns out that this result follows by synthesizing the results

that are already given in Sections 4 and 5. In Section 4, we show that if we focus only on the nested-

by-revenue assortments {Nij : j ∈ N+}, then we obtain the performance guarantee in (6) when we

have possibly synergistic products and fully-captured nests. Noting the definition of Nk
ij in the previous
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section, Nn
ij is identical to the nested-by-revenue assortment Nij . Therefore, we have {Nij : j ∈ N+} ⊂

{Nk
ij : k ∈ N, j = 0, . . . , k}, which implies that if we focus on the collection of assortments

{Nk
ij : k ∈ N, j = 0, . . . , k}, then we still obtain the performance guarantee in (6) when we have possibly

synergistic products and fully-captured nests. On the other hand, in Section 5, we show that if we focus

only on the collection of assortments {Nk
ij : k ∈ N, j = 0, . . . , k} ∪ {{j} : j ∈ N}, then we obtain a

performance guarantee of two when we have competitive products and partially-captured nests. In this

case, using Mf and Mp to respectively denote the sets of fully-captured and partially-captured nests

and letting a ∨ b = max{a, b}, it is possible to synthesize these results to show that if we focus only on

the collection of assortments {Nk
ij : k ∈ N, j = 0, . . . , k}∪{{j} : j ∈ N}, then we obtain a performance

guarantee of

max
i∈Mf ,j=2,...,n

{
Vi(Nij)

Vi(Ni,j−1)

}
∨ max

i∈Mp,j=1,...,n

{
Vi(Nij)

Vi(Ni,j−1)

}
∨ 2 (12)

for the most general instances of the assortment optimization problem. Note that if i is a fully-captured

nest, then Vi(Ni0) = Vi(∅) = 0 and we do not consider the term Vi(Ni1)/Vi(Ni0) in the expression above

for fully-captured nests. To see the implication of the performance guarantee in (12), we observe that if

the largest and the smallest preference weights within a nest differ from each other by at most a factor

of κ, then we have Vi(Nij)/Vi(Ni,j−1) ≤ (jκ)/(j − 1) for fully-captured nests and Vi(Nij)/Vi(Ni,j−1) ≤
(j+1)κ/j for partially-captured nests. Thus, the performance guarantee in (12) cannot exceed 2κ∨2 =

2κ. This observation implies that if we use {Nk
ij : k ∈ N, j = 0, . . . , k}∪ {{j} : j ∈ N} as the collection

of candidate assortments for nest i, then the best assortment that we can stitch together from these

candidate assortments is expected to perform well when the preference weights within a nest do not

differ too much from each other.

We can build on Theorem 1 to establish the performance guarantee in (12). Assume that we solve

problem (4) after replacing the collection of candidate assortments {Ait : t ∈ Ti} in the second set of

constraints with the collection {Nk
ij : k ∈ N, j = 0, . . . , k} ∪ {{j} : j ∈ N}. Letting (x̂, ŷ) be the

optimal solution we obtain in this fashion and using β to denote the expression in (12), if we can show

that (β x̂, β ŷ) is a feasible solution to problem (3), then Theorem 1 implies that we can focus only on

the collection of assortments {Nk
ij : k ∈ N, j = 0, . . . , k} ∪ {{j} : j ∈ N} and obtain an assortment

whose expected revenue deviates from the optimal expected revenue by no more than a factor of β. The

following theorem shows this result. Its proof is given in the appendix.

Theorem 11 Let (x̂, ŷ) be an optimal solution to problem (4) when we solve this problem after replacing

the collection of candidate assortments {Ait : t ∈ Ti} in the second set of constraints with the assortments

{Nk
ij : k ∈ N, j = 0, . . . , k} ∪ {{j} : j ∈ N}. Then, using β to denote the expression in (12), (β x̂, β ŷ)

is a feasible solution to problem (3).

Thus, similar to the discussion at the end of Section 5, since there are 1 + n + n2 assortments in

the collection {Nk
ij : k ∈ N, j = 0, . . . , k} ∪ {{j} : j ∈ N}, we can solve a linear program with 1 +m

decision variables and 1 +m (1 + n+ n2) constraints to obtain an assortment whose expected revenue

deviates from the optimal expected revenue by at most a factor given in (12).
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6.2 Near-Optimal Assortments

In this section, we give a pseudo-polynomial-time algorithm for our assortment problem. Following

this result, we develop an approximation scheme that can tradeoff performance guarantee with

computational work. Both of these results are based on viewing problem (3) from a knapsack

perspective. In particular, we define Gi(ϵi) as the optimal objective value of the knapsack problem

Gi(ϵi) = max
Si⊂N

{ ∑
j∈Si

rij vij : vi0 +
∑
j∈Si

vij = ϵi

}
, (13)

where we let Gi(ϵi) = −∞ when the problem on the right side above is infeasible. The second set of

constraints in problem (3) are given by yi ≥ Vi(Si)
γi(

∑
j∈Si

rij vij/Vi(Si)−x) for all Si ⊂ N , i ∈ M and

problem (13) finds the largest value of
∑

j∈Si
rij vij while keeping Vi(Si) constant at ϵi. Thus, problem

(3) can equivalently be written as

min x (14)

s.t. v0 x ≥
∑
i∈M

yi

yi ≥ ϵγii

[
Gi(ϵi)

ϵi
− x

]
∀ ϵi ≥ 0, i ∈ M,

where we treat 0/0 as zero in the second set of constraints. Letting vLi = vi0 + minj∈N vij and vUi =

vi0 +
∑

j∈N vij , the definition of Gi(ϵi) in (13) implies that Gi(ϵi) = Gi(vi0) or Gi(ϵi) = −∞ for all

ϵi < vLi , whereas Gi(ϵi) = −∞ for all ϵi > vUi . Therefore, it is enough to consider the values of ϵi with

ϵi = vi0 or ϵi ∈ [vLi , v
U
i ] in the second set of constraints in problem (14).

Problem (13) can be visualized as an optimization version of the partition problem since it tries

to find an assortment Si that maximizes the objective value among all assortments whose preference

weights add up to ϵi. There is a well-known pseudo-polynomial-time algorithm for the partition problem;

see Garey and Johnson (1979). This pseudo-polynomial-time algorithm operates under the assumption

that all preference weights are integer-valued, in which case, the only values of ϵi that render problem

(13) feasible are integer-valued. By using a dynamic program, the pseudo-polynomial-time algorithm

computes Gi(ϵi) for all ϵi ∈ [vLi , v
U
i ] in O(n vUi ) time. We give such a dynamic program in Appendix

A.5. Thus, also noting that Gi(vi0) = 0, the pseudo-polynomial-time algorithm can compute Gi(ϵi) for

all values of ϵi that we need to consider in the second set of constraints in problem (14). Once we have

Gi(ϵi) for all values of ϵi, we can solve problem (14) to obtain the optimal objective value of problem

(3), which is, in turn, equal to the optimal expected revenue in problem (2). This approach amounts

to solving a linear program with 1 + m decision variables and 1 + m (2 + vUi − vLi ) constraints and it

provides a pseudo-polynomial-time algorithm for our assortment optimization problem.

It is also possible to build on problem (14) to develop an approximation method that can tradeoff

computational work with performance guarantee. This approximation method is based on constructing

tractable approximations to Gi(ϵi). In particular, instead of considering every single possible value

of ϵi with ϵi = vi0 or ϵi ∈ [vLi , v
U
i ] in the second set of constraints in problem (14), we choose some
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δ > 1 and consider the values of ϵi that are close to the powers of δ. To do this, we define lLi as

lLi = min{l ∈ Z : δl ≥ vLi } and lUi = min{l ∈ Z : δl ≥ vUi } so that we have [vLi , v
U
i ] ⊂ [δl

L
i −1, δl

U
i ]. In this

case, whenever ϵi lies in the interval [δl−1, δl] for some l = lLi , . . . , l
U
i , we approximate Gi(ϵi) by

Ĝil = max
Si⊂N

{ ∑
j∈Si

rij vij : δ
l−1 ≤ vi0 +

∑
j∈Si

vij ≤ δl

}
. (15)

Problem (15) is still difficult to solve exactly as it is a knapsack problem with both upper and

lower bounds, but it turns out we can compute approximate solutions to this problem. In particular,

Proposition 15 in the appendix shows that we can find an assortment Ŝil that satisfies δl−1 ≤
vi0 +

∑
j∈Ŝil

vij ≤ δl and δ
∑

j∈Ŝil
rij vij ≥ Ĝil. In other words, the assortment Ŝil is a feasible solution

to problem (15) and the objective value provided by this assortment deviates from the optimal objective

value of problem (15) by no more than a factor of δ. Proposition 15 also shows that the computational

work required to obtain the assortment Ŝil takes O(⌈δ/(δ − 1)⌉2 n2 ⌈δ/(δ−1)⌉) time, where we use ⌈·⌉ to

denote the round up function. Thus, if we want Ŝil to be a more accurate solution to problem (15),

then we need to choose δ closer to one, but choosing δ closer to one also increases the computational

work to obtain the assortment Ŝil. In this way, we can use Ŝil as an approximate solution problem (15)

whenever ϵi lies in the interval [δl−1, δl], while balancing computational work with accuracy.

We propose using the assortments {Ŝil : l = lLi , . . . , l
U
i }∪{∅} as a collection of candidate assortments

for nest i. To find the best combination of such assortments, we solve problem (4) after replacing the

collection of candidate assortments {Ait : t ∈ Ti} in the second set of constraints with the collection

of assortments {Ŝil : l = lLi , . . . , l
U
i } ∪ {∅}. Letting (x̂, ŷ) be the optimal solution to problem (4) that

we obtain in this fashion and recalling that γ̄ = maxi∈M γi, if we can show that (δ2γ̄+1 x̂, δγ̄+1 ŷ) is a

feasible solution to problem (3), then Theorem 1 implies that we can focus only on the assortments

{Ŝil : l = lLi , . . . , l
U
i } ∪ {∅} for nest i and still obtain an assortment whose expected revenue deviates

from the optimal expected revenue by no more than a factor of δ2γ̄+1. We establish this result in the

following theorem. The proof of this theorem is given in the appendix.

Theorem 12 Let (x̂, ŷ) be an optimal solution to problem (4) when we solve this problem after replacing

the collection of candidate assortments {Ait : t ∈ Ti} in the second set of constraints with the assortments

{Ŝil : l = lLi , . . . , l
U
i } ∪ {∅}. Then, (δ2γ̄+1 x̂, δγ̄+1 ŷ) is a feasible solution to problem (3).

Theorem 12 implies that if we use the assortments {Ŝil : l = lLi , . . . , l
U
i } ∪{∅} as candidate

assortments for nest i, then we can combine these assortments for the different nests to obtain a solution

to problem (2) whose expected revenue deviates from the optimal expected revenue by no more than a

factor of δ2γ̄+1. To find the best combination of these assortments, we need to solve problem (4) after

replacing the collection of candidate assortments {Ait : t ∈ Ti} in the second set of constraints with the

collection of assortments {Ŝil : l = lLi , . . . , l
U
i } ∪{∅}. Since we have δl

L
i ≥ vLi and δl

U
i −1 ≤ vUi , we have

lUi − lLi ≤ 1 + logδ(v
U
i /v

L
i ). Therefore, for the most general instances of the assortment optimization

problem we are interested in, we can solve a linear program with 1 +m decision variables and at most

1 + m (2 + logδ(v
U
i /v

L
i )) constraints to find an assortment whose expected revenue deviates from the

optimal expected revenue by no more than a factor of δ2γ̄+1.
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7 Upper Bounds on Optimal Expected Revenue

In the previous three sections, we give collections of candidate assortments such that if we focus on

these collections, then we can stitch together an assortment with a certain performance guarantee. The

performance guarantees we give reflect the worst-case performance of a given collection of assortments,

where the worst-case is taken over all possible problem instances. In this section, our goal is to develop

a tractable upper bound on the optimal expected revenue that we can compute for each individual

problem instance. We can then use the collections of assortments given in the previous sections to

obtain the best possible assortment and compare the expected revenue from this assortment with the

problem instance-specific upper bound on the optimal expected revenue. In this way, we can bound the

optimality gap of the assortment we obtain for a particular problem instance.

To construct an upper bound on the optimal expected revenue, we use a tighter version of problem

(3) that is similar to the one in Section 4.2. In particular, since the second set of constraints in problem

(3) can be written as yi ≥ maxSi⊂N Vi(Si)
γi(Ri(Si) − x) for all i ∈ M , using the decision variables

zi = (zi1. . . . , zin) ∈ [0, 1]n, we formulate a tighter version of problem (3) as

min x (16)

s.t. v0 x ≥
∑
i∈M

yi

yi ≥ max
zi∈[0,1]n

{(
vi0 +

∑
j∈N

vij zij

)γi

[ ∑
j∈N rij vij zij

vi0 +
∑

j∈N vij zij
− x

]}
∀ i ∈ M.

Problem (16) is a tighter version of problem (3) as any feasible solution to problem (16) is a feasible

solution to problem (3). Therefore, if we can solve problem (16) in a tractable fashion, then the optimal

objective value of this problem provides an upper bound on the optimal expected revenue.

To see how we can solve problem (16) in a tractable fashion, for a fixed value of x, we use Fi(zi |x)
to denote the objective function of the maximization problem on the right side of the second set of

constraints in problem (16) and let F̂i(x) = maxzi∈[0,1]n Fi(zi |x). So, problem (16) is equivalent to

min x (17)

s.t. v0 x ≥
∑
i∈M

yi

yi ≥ F̂i(x) ∀ i ∈ M.

If we can show that F̂i(x) is a convex function of x, then the feasible region of problem (17) ends up being

convex. Thus, noting that the objective function is linear, problem (17) becomes a convex optimization

problem. Furthermore, if we can obtain subgradients of F̂i(x) with respect to x in a tractable fashion,

then we can use a standard cutting plane method for convex optimization to solve problem (17); see

Ruszczynski (2006). The following proposition follows a standard argument in nonlinear programming

to show that F̂i(x) is indeed a convex function of x and demonstrates how to obtain subgradients of

this function with respect to x.

29



Proposition 13 The function F̂i(·) is convex. Furthermore, if we let ẑi(x) be an optimal solution to

the problem maxzi∈[0,1]n Fi(zi |x), then a subgradient of F̂i(·) at x is given by −(vi0+
∑

j∈N vij ẑij(x))
γi.

Proof. By the definitions of F̂i(x) and ẑi(x), it follows that F̂i(x) = Fi(ẑi(x) |x) and F̂i(x
′) ≥

Fi(ẑi(x) |x′). Subtracting the equality from the inequality and noting that Fi(ẑi(x) |x′)−Fi(ẑi(x) |x) =
−(vi0 +

∑
j∈N vij ẑij(x))

γi (x′ − x), we obtain

F̂i(x
′) ≥ F̂i(x)−

(
vi0 +

∑
j∈N

vij ẑij(x)
)γi

(x′ − x),

which implies that F̂i(·) satisfies the subgradient inequality at x with a subgradient given by −(vi0 +∑
j∈N vij ẑij(x))

γi . In this case, by Theorem 3.2.6 in Bazaraa et al. (1993), F̂i(x) is a convex function

of x with a subgradient as given in the proposition. 2

Proposition 13 shows that we can obtain a subgradient of F̂i(·) at x by solving the problem

max
zi∈[0,1]n

Fi(zi |x) = max
zi∈[0,1]n

{(
vi0 +

∑
j∈N

vij zij

)γi

[ ∑
j∈N rij vij zij

vi0 +
∑

j∈N vij zij
− x

]}
(18)

at a fixed value of x. Thus, if we can solve the problem above in a tractable fashion, then we can also

solve problem (17) through a standard cutting plane method. In the rest of this section, we focus on

solving problem (18) at a fixed value of x.

Following the same argument in the proof of Lemma 6, we can show that there exists an optimal

solution z∗i to problem (18) that satisfies z∗i1 = 1, z∗i2 = 1, . . . , z∗i,k−1 = 1, z∗ik ∈ [0, 1], z∗i,k+1 = 0, . . . , z∗in =

0 for some k = 1, . . . , n. In other words, if we define the vector ηk = (ηk1 , . . . , η
k
n) ∈ ℜn such that

ηk1 = 1, . . . , ηkk−1 = 1, ηkk = 0, . . . , ηkn = 0 and use ek to denote the k-th unit vector in ℜn, then an optimal

solution to problem (18) is of the form ηk + ρ ek for some ρ ∈ [0, 1] and k = 1, . . . , n. To find the best

value for ρ, we can solve the problem maxρ∈[0,1] Fi(η
k+ρ ek |x), which is a scalar optimization problem. A

simple check verifies that the first derivative of Fi(η
k + ρ ek |x) with respect to ρ vanishes at one point

and the point at which the first derivative vanishes can be computed in closed-form fashion. Therefore,

the optimal objective value of the problem maxρ∈[0,1] Fi(η
k+ρ ek |x) is attained either at one of the two

end points of the interval [0, 1] or at the point where the first derivative of Fi(η
k + ρ ek |x) with respect

to ρ vanishes. By checking the objective value of the problem maxρ∈[0,1] Fi(η
k + ρ ek |x) at these three

points, we can easily solve this problem. In this case, the optimal objective value of problem (18) can

be obtained by solving the problem maxρ∈[0,1] Fi(η
k + ρ ek |x) for all k = 1, . . . , n and picking the one

that yields the largest optimal objective value.

8 Computational Experiments

In this section, we provide computational experiments to test the quality of the solutions that we obtain

by focusing on various collections of candidate assortments. Our goal is to compare the performance

of different collections of candidate assortments under different problem characteristics. We begin by

describing the details of our experimental setup. Following this description, we give the findings from

our computational experiments.
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8.1 Experimental Setup

The results in Sections 4.2 and 6.1 suggest that the performance guarantee provided by the collections

of assortments considered in these sections can depend on how much the revenues or the preference

weights of the products in the same nest differ. Similarly, the results in Sections 4.2 and 6.2 show that

the performance of the collections of assortments that we develop can depend on the magnitude of the

dissimilarity parameters. In our computational experiments, we investigate how the performance of

different collections of candidate assortments changes with various problem parameters.

Throughout this section, we consider test problems with possibly synergistic products and partially-

captured nests, which correspond to the most general instances of our assortment problem. We build

on the example in Section 4.1 to generate our test problems. Noting that ε ≤ 1 is a small positive

number, product 1 in this example has a large revenue but a small preference weight. Product 2 has

a small revenue but a large preference weight. Product 3 has zero revenue and a moderate preference

weight. We observe that although product 1 has a large revenue, its preference weight is too small to

attract customers to its nest. In contrast, product 2 has a large preference weight and it can effectively

attract customers to the nest, but if a customer is attracted to the nest, then the preference weight

of product 2 is so large that the customer ends up buying product 2 with high probability. Since the

revenue of product 2 is small, this outcome yields a small revenue. While product 3 has a revenue of

zero, its moderate preference weight can attract customers to the nest, but its preference weight is not

so large that once a customer is attracted to the nest, there is a reasonable probability that he can end

up buying product 1. So, product 3 is essentially a loss leader, whose purpose is to attract customers

to the nest. Recall that nested-by-revenue assortments can perform poorly in this example.

We proceed as follows to generate test problems with the same flavor as above, but with reasonably

large numbers of nests and products. In all of our test problems, the number of nests is m = 5 and the

number of products in each nest is n = 25. This results in problem sizes that correspond to applications

arising in some revenue management and retail settings. We choose a positive parameter ε ≤ 1 that

characterizes the degree to which the revenues and the preference weights of the products in the same

nest differ. We vary the parameter ε in our computational experiments. To come up with the revenues

and the preference weights associated with the first n− 1 products in nest i, we generate Uij from the

uniform distribution over [0, 4] for all j ∈ N \ {n}. Also, we generate Xij and Yij respectively from the

uniform distributions over [1, 10] and [0.2, 1.8] for all j ∈ N \ {n}. In this case, we set the revenue of

product j in nest i as rij = εUij × Xij , whereas we set the preference weight associated with product

j in nest i as vij = ε2−Uij × Yij . The reasoning behind our choice of revenues and preference weights

is that if we multiply the revenues and the preference weights of products 1 or 2 in the example in

Section 4.1, then we end up with a quantity that is of magnitude ε2. If we multiply the revenues and

the preference weights of the products we generate, then we obtain εUij ×Xij × ε2−Uij × Yij , which is

of magnitude ε2 as well. If the generated value of Uij turns out to be closer to zero, then we obtain a

product that resembles product 1 in the example in Section 4.1, whereas if the generated value of Uij

turns out to be closer to four, then we obtain a product that resembles product 2. The role of Xij and

Yij is to introduce some noise in the revenues and the preference weights. To generate the revenue and
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the preference weight associated with the last product n in nest i, we generate Yin from the uniform

distribution over [0.2, 1.8] and set the revenue and the preference weight of this product respectively as

rin = 0 and vin = ε−1 × Yin. We observe that the revenue and the preference weight of the last product

are of the same magnitude as the revenue and the preference weight of product 3 in the example in

Section 4.1. With this setup, it is possible to check that as ε gets smaller, there are larger differences

between the revenues or the preference weights of the products in the same nest.

To come up with the dissimilarity parameter of nest i, we generate γi from the uniform distribution

over [γL, γU ] for all i ∈ M , where γL and γU are parameters we vary. We set the preference weights of

the no purchase options to v0 = 10 and vi0 = ε−4 for all i ∈ M . In our computational experiments, we

vary ε over {0.6, 0.5, 0.4, 0.3}, whereas we vary [γL, γU ] over {[0.5, 1.5], [1.0, 2.0], [1.5, 2.5], [2.0, 3.0]}. In
this way, we obtain 16 combinations of problem parameters. Following the approach described in the

paragraph above, we generate 5,000 individual problem instances for each combination of problem

parameters ε and [γL, γU ].

We test the performance of three different collections of assortments on each problem instance. The

first collection of assortments is nested-by-revenue assortments. This collection for nest i corresponds

to {Nij : j ∈ N+}. While nested-by-revenue assortments provide the performance guarantee in (6) for

fully-captured nests, we are not able to give a performance guarantee for these assortments for the most

general instances of our assortment problem. However, since they are intuitively appealing and easy

to implement, it is useful to test their performance. We refer to the second collection of assortments

as nested-by-preference-and-revenue assortments. This collection of assortments for nest i is given by

{Nk
ij : k ∈ N, j = 0, . . . , k} ∪ {{j} : j ∈ N}. In Section 6.1, we show that this collection provides the

performance guarantee given in (12) for the most general instances of our assortment problem. The

third collection that we consider is referred to as powers-of-δ assortments and this collection for nest i

is given by {Ŝil : l = lLi , . . . , l
U
i } ∪ {∅}. We work with powers-of-δ assortments in Section 6.2 and show

that these assortments provide a performance guarantee of maxi∈M δ2γi+1. The computational work

required to obtain the powers-of-δ assortments depends on the value of δ and we set δ = 1.25 in all of

our computational experiments. With this value of δ, we can generate all powers-of-δ assortments for a

particular problem instance and find the best assortment within this class in one tenths of a second. We

note that there are 1 + n nested-by-revenue assortments and 1 + n + n2 nested-by-preference-and-

revenue assortments in each nest. So, both of these collections grow polynomially with n. In contrast,

there are 2 + logδ(v
U
i /v

L
i ) powers-of-δ assortments in nest i and noting that vUi = vi0 +

∑
j∈N vij and

vLi = vi0 +minj∈N vij , the number of powers-of-δ assortments grows logarithmically with n.

8.2 Computational Results

We give our main computational results in Tables 2, 3 and 4, where Tables 2, 3 and 4 respectively

show the performance of the nested-by-revenue, nested-by-preference-and-revenue and powers-of-δ

assortments. In these tables, the first column shows the combination of problem parameters by using the

tuple ([γL, γU ], ε). Recall that we generate 5,000 individual problem instances for each combination of

problem parameters. For each problem instance we generate, we solve problem (16) to obtain an upper
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bound on the optimal expected revenue. We use UBk to denote the upper bound on the optimal

expected revenue we obtain for problem instance k. Furthermore, given a collection of candidate

assortments, we find the best assortment that we can stitch together by focusing on these candidate

assortments. In Table 2, the candidate assortments are the nested-by-revenue assortments, whereas in

Tables 3 and 4, the candidate assortments are respectively the nested-by-preference-and-revenue and

powers-of-δ assortments. For problem instance k, we use Bestk to denote the expected revenue provided

by the best assortment we can find by focusing on a particular collection of candidate assortments. The

second column in Tables 2, 3 and 4 shows the number of problem instances k for which we have

UBk > Bestk. These problem instances correspond to those where we are not able to establish the

optimality of the best assortment we can find. The third column focuses on the problem instances for

which we cannot establish the optimality of the best assortment we can find, and reports the average

percent gap between UBk and Bestk over these problem instances. In other words, using K to denote

the set of problem instances {k = 1, . . . , 5,000 : UBk > Bestk}, the third column gives

1

|K|
∑
k∈K

100
UBk − Bestk

UBk
.

The third column can be interpreted as the estimate of the average optimality gap of the best assortment

we can find given that we cannot verify the optimality of this assortment. This column gives only

an estimate of the average optimality gap since we do not know the optimal expected revenue for

our problem instances and we only have an upper bound on the optimal expected revenue. The

fourth column in Tables 2, 3 and 4 gives the 99-th percentile of the gaps between UBk and Bestk

over all 5,000 problem instances. That is, the fourth column gives the 99-th percentile of the data

{100(UBk − Bestk)/UBk : k = 1, . . . , 5,000}. The fifth column shows the largest percent gap between

UBk and Bestk over all 5,000 problem instances. The sixth column shows the average number of

products per nest in the best assortment we find. Finally, the last two columns give a feel for how

much the revenues and the preference weights of the products in the same nest differ. In particular,

the seventh column gives the average ratio between the largest and the smallest revenues in a nest,

averaged over all nests and all 5,000 problem instances. Naturally, we do not consider the loss leader

product with a revenue of zero when computing the ratio between the largest and the smallest revenues

in a nest. The eighth column gives the average ratio between the largest and the smallest preference

weights in a nest, averaged over all nests and all 5,000 problem instances.

The results in Table 2 indicate that nested-by-revenue assortments can perform well. When the

dissimilarity parameters of the nests take values over [0.5, 1.5], we can verify that nested-by-revenue

assortments are optimal in about half of the problem instances. Furthermore, the optimality gaps

of these assortments never exceeds 0.81%. As [γL, γU ] shifts from [0.5, 1.5] to [2.0, 3.0], the average

optimality gaps of nested-by-revenue assortments increase from 0.01% to 0.38%. The overall trend is

that the performance of nested-by-revenue assortments can degrade as [γL, γU ] increases and the nest

dissimilarity parameters become larger. Another trend we observe from Table 2 is that the optimality

gaps of nested-by-revenue assortments tend to increase as ε gets smaller. For the problem instances with

[γL, γU ] = [0.5, 1.5], the average optimality gaps of nested-by-revenue assortments increase from 0.01%

to 0.05% as ε decreases from 0.6 to 0.3, whereas for the problem instances with [γL, γU ] = [2.0, 3.0], the
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Prob. Avg. 99-th Avg. Avg. Avg.
Param. Sub. % Gap Per. Larg. Ass. Rev. Pref.

([γL, γU ], ε) Cnt. in Sub. % Gap. % Gap Size Rat. Rat.

([0.5, 1.5], 0.6) 1,999 0.01 0.07 0.34 6.38 24.08 22.59
([0.5, 1.5], 0.5) 2,235 0.02 0.12 0.38 6.37 42.58 40.05
([0.5, 1.5], 0.4) 2,494 0.03 0.20 0.66 6.55 88.42 83.35
([0.5, 1.5], 0.3) 2,832 0.05 0.33 0.81 6.90 234.61 221.63

([1.0, 2.0], 0.6) 3,933 0.03 0.20 0.52 5.94 24.08 22.59
([1.0, 2.0], 0.5) 4,194 0.05 0.35 0.71 6.36 42.58 40.05
([1.0, 2.0], 0.4) 4,447 0.08 0.51 1.43 7.00 88.42 83.35
([1.0, 2.0], 0.3) 4,624 0.13 0.87 2.70 7.87 234.61 221.63

([1.5, 2.5], 0.6) 4,529 0.06 0.40 1.56 5.17 24.08 22.59
([1.5, 2.5], 0.5) 4,773 0.09 0.59 1.63 5.85 42.58 40.05
([1.5, 2.5], 0.4) 4,899 0.14 0.85 2.13 6.74 88.42 83.35
([1.5, 3.0], 0.3) 4,947 0.25 1.49 4.21 7.87 234.61 221.63

([2.0, 3.0], 0.6) 4,696 0.09 0.61 2.00 4.42 24.08 22.59
([2.0, 3.0], 0.5) 4,871 0.14 0.86 2.47 5.28 42.58 40.05
([2.0, 3.0], 0.4) 4,960 0.22 1.25 3.70 6.33 88.42 83.35
([2.0, 3.0], 0.3) 4,984 0.38 2.07 5.45 7.61 234.61 221.63

Table 2: Performance of nested-by-revenue assortments.

average optimality gaps increase from 0.09% to 0.38% as ε decreases from 0.6 to 0.3. We recall that as ε

gets smaller, the difference between both the revenues and the preference weights of the products in the

same nest gets larger. Thus, our results indicate that the performance nested-by-revenue assortments

can degrade when we have drastic differences between the revenues and the preference weights. When

we have [γL, γU ] = [2.0, 3.0] and ε = 0.3, there are problem instances where the estimated optimality gap

of nested-by-revenue assortments can reach 5.45%. Nevertheless, we note that these problem instances

seem unlikely to come up in practice as they involve products in the same nest with revenues differing

by a factor of about 234 and preference weights differing by a factor of about 221.

Our findings in Table 3 indicate that nested-by-preference-and-revenue assortments provide small

improvements over nested-by-revenue assortments when we consider the problem instances with

[γL, γU ] = [0.5, 1.5]. The performance of nested-by-revenue assortments is already quite satisfactory for

these problem instances and it turns out to be difficult to improve over these assortments. As [γL, γU ]

increases, however, nested-by-preference-and-revenue assortments can provide noticeable improvements

over nested-by-revenue assortments. For the problem instances with [γL, γU ] = [2.0, 3.0], nested-

by-preference-and-revenue assortments can decrease the largest optimality gaps of nested-by-revenue

assortments by more than 2%. Finally, Table 4 shows that the performance of powers-of-δ assortments

is not as good as the performance of the other two collections of assortments we consider. For almost all of

the problem instances, we cannot verify the optimality of the best powers-of-δ assortment. Nevertheless,

the largest optimality gaps of powers-of-δ assortments are still below 5%. Also, for the problem instances

with [γL, γU ] = [2.0, 3.0] and ε = 0.3, comparing the largest optimality gaps of nested-by-revenue

and powers-of-δ assortments indicates that there are problem instances where powers-of-δ assortments

improve over nested-by-revenue assortments.

Our results suggest two problem parameters that can affect the performance of the collections of

assortments we propose. The first parameter is the dissimilarity parameters of the nests. The second
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Prob. Avg. 99-th Avg. Avg. Avg.
Param. Sub. % Gap Per. Larg. Ass. Rev. Pref.

([γL, γU ], ε) Cnt. in Sub. % Gap. % Gap Size Rat. Rat.

([0.5, 1.5], 0.6) 1,999 0.01 0.06 0.20 6.38 24.08 22.59
([0.5, 1.5], 0.5) 2,235 0.02 0.11 0.31 6.37 42.58 40.05
([0.5, 1.5], 0.4) 2,494 0.03 0.18 0.48 6.55 88.42 83.35
([0.5, 1.5], 0.3) 2,832 0.04 0.28 0.78 6.90 234.61 221.63

([1.0, 2.0], 0.6) 3,933 0.03 0.18 0.51 5.94 24.08 22.59
([1.0, 2.0], 0.5) 4,194 0.04 0.27 0.71 6.37 42.58 40.05
([1.0, 2.0], 0.4) 4,447 0.07 0.39 0.92 7.02 88.42 83.35
([1.0, 2.0], 0.3) 4,624 0.11 0.65 1.31 7.89 234.61 221.63

([1.5, 2.5], 0.6) 4,529 0.05 0.34 0.79 5.18 24.08 22.59
([1.5, 2.5], 0.5) 4,773 0.08 0.47 1.03 5.87 42.58 40.05
([1.5, 2.5], 0.4) 4,899 0.12 0.68 2.13 6.78 88.42 83.35
([1.5, 3.0], 0.3) 4,947 0.19 1.03 2.42 7.92 234.61 221.63

([2.0, 3.0], 0.6) 4,696 0.08 0.51 1.24 4.43 24.08 22.59
([2.0, 3.0], 0.5) 4,871 0.12 0.68 1.82 5.31 42.58 40.05
([2.0, 3.0], 0.4) 4,960 0.18 0.88 2.20 6.38 88.42 83.35
([2.0, 3.0], 0.3) 4,984 0.29 1.33 3.26 7.68 234.61 221.63

Table 3: Performance of nested-by-preference-and-revenue assortments.

Prob. Avg. 99-th Avg. Avg. Avg.
Param. Sub. % Gap Per. Larg. Ass. Rev. Pref.

([γL, γU ], ε) Cnt. in Sub. % Gap. % Gap Size Rat. Rat.

([0.5, 1.5], 0.6) 4,996 0.93 2.22 3.20 6.46 24.08 22.59
([0.5, 1.5], 0.5) 4,991 0.89 2.13 3.09 6.43 42.58 40.05
([0.5, 1.5], 0.4) 4,969 0.80 2.06 2.90 6.61 88.42 83.35
([0.5, 1.5], 0.3) 4,937 0.68 1.82 2.86 6.96 234.61 221.63

([1.0, 2.0], 0.6) 4,994 1.01 2.42 3.68 6.01 24.08 22.59
([1.0, 2.0], 0.5) 4,998 0.97 2.33 3.72 6.42 42.58 40.05
([1.0, 2.0], 0.4) 4,998 0.88 2.27 3.95 7.08 88.42 83.35
([1.0, 2.0], 0.3) 4,997 0.78 2.05 3.14 7.91 234.61 221.63

([1.5, 2.5], 0.6) 4,999 1.12 2.87 4.40 5.25 24.08 22.59
([1.5, 2.5], 0.5) 4,999 1.07 2.67 3.90 5.92 42.58 40.05
([1.5, 2.5], 0.4) 5,000 0.99 2.53 3.80 6.81 88.42 83.35
([1.5, 3.0], 0.3) 4,999 0.91 2.37 3.26 7.91 234.61 221.63

([2.0, 3.0], 0.6) 4,997 1.22 3.42 4.37 4.53 24.08 22.59
([2.0, 3.0], 0.5) 5,000 1.18 3.08 4.64 5.37 42.58 40.05
([2.0, 3.0], 0.4) 5,000 1.10 2.84 4.92 6.40 88.42 83.35
([2.0, 3.0], 0.3) 4,999 1.03 2.73 4.02 7.66 234.61 221.63

Table 4: Performance of powers-of-δ assortments.
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Figure 1: Optimality gaps for nested-by-preference-and-revenue assortments.

parameter is the degree to which the revenues or the preference weights of the products in the same

nest differ. To make such trends clear, Figure 1 plots the optimality gaps for nested-by-preference-and-

revenue assortments as a function of the nest dissimilarity parameters and the difference between the

revenues and the preference weights of the products in the same nest. Our earlier results indicate that

nested-by-preference-and-revenue assortments generally provide better performance than the other two

collections and to conserve space, we focus only on these assortments in Figure 1. The horizontal axis in

this figure shows the values of [γL, γU ] and ε for the 16 combinations of problem parameters. The thin

data series plot the average optimality gap of nested-by-preference-and-revenue assortments, whereas

the thick data series plot the 99-th percentile of the optimality gaps over the 5,000 problems instances

generated for a certain combination of problem parameters. From the figure, we observe that as ε shifts

from 0.6 to 0.3, keeping [γL, γU ] constant, the optimality gaps of nested-by-preference-and-revenue

assortments get larger. Similarly, as [γL, γU ] shifts from [0.5, 1.5] to [2.0, 3.0], keeping ε constant, the

optimality gaps of nested-by-preference-and-revenue assortments get larger as well.

In Tables 2, 3 and 4, we keep the width of the interval [γL, γU ] constant at one and systematically

increase the value of γL. An interesting question is how our collections of assortments perform as we

increase the width of the interval [γL, γU ]. To answer this question, we fix γL at one and vary γU over

{1.5, 2.0, 2.5, 3.0}. We fix ε at 0.3, which corresponds to the case with the largest optimality gaps in our

earlier results. Table 5 shows our findings. The layout of this table is similar to that of Tables 2, 3 and

4. The three portions of this table focus on the performance of nested-by-revenue, nested-by-preference-

and-revenue and powers-of-δ assortments. The results in Table 5 indicates that as γU increases and the

nest dissimilarity parameters tend to take values significantly larger than one, the optimality gaps of

all three collections of assortments get larger. Nevertheless, even with ε = 0.3, which corresponds to a

case where the revenues and the preference weights of the products in the same nest differ respectively

by factors of about 234 and 221, the 99-th percentile of the optimality gaps for the best collections of

assortments do not exceed 1.40% and the largest optimality gaps do not exceed 3.85%.

36



Nested-by-revenue assortments
Prob. Avg. 99-th Avg. Avg. Avg.
Param. Sub. % Gap Per. Larg. Ass. Rev. Pref.

([γL, γU ], ε) Cnt. in Sub. % Gap. % Gap Size Rat. Rat.

([1.0, 1.5], 0.3) 3,866 0.05 0.37 0.88 7.81 234.61 221.63
([1.0, 2.0], 0.3) 4,624 0.13 0.87 2.70 7.87 234.61 221.63
([1.0, 2.5], 0.3) 4,827 0.22 1.53 4.62 7.74 234.61 221.63
([1.0, 3.0], 0.3) 4,898 0.32 2.12 6.73 7.55 234.61 221.63

Nested-by-preference-and-revenue assortments
Prob. Avg. 99-th Avg. Avg. Avg.
Param. Sub. % Gap Per. Larg. Ass. Rev. Pref.

([γL, γU ], ε) Cnt. in Sub. % Gap. % Gap Size Rat. Rat.

([1.0, 1.5], 0.3) 3,866 0.05 0.31 0.76 7.82 234.61 221.63
([1.0, 2.0], 0.3) 4,624 0.11 0.65 1.31 7.89 234.61 221.63
([1.0, 2.5], 0.3) 4,827 0.18 1.00 1.93 7.78 234.61 221.63
([1.0, 3.0], 0.3) 4,898 0.24 1.40 3.85 7.60 234.61 221.63

Powers-of-δ assortments
Prob. Avg. 99-th Avg. Avg. Avg.
Param. Sub. % Gap Per. Larg. Ass. Rev. Pref.

([γL, γU ], ε) Cnt. in Sub. % Gap. % Gap Size Rat. Rat.

([1.0, 1.5], 0.3) 4,981 0.69 1.84 2.46 7.86 234.61 221.63
([1.0, 2.0], 0.3) 4,997 0.78 2.05 3.14 7.91 234.61 221.63
([1.0, 2.5], 0.3) 4,998 0.87 2.31 3.32 7.78 234.61 221.63
([1.0, 3.0], 0.3) 4,999 0.97 2.69 3.96 7.60 234.61 221.63

Table 5: Performance of the three different collections of assortments as a function of γU .

9 Conclusions

In this paper, we studied a class of assortment optimization problems under variants of the nested

logit model. We showed that the problem is polynomially solvable when the dissimilarity parameters

of the nests are less than one, and the customers always purchase a product within their selected

nest. Relaxing either one of these assumptions renders the problem NP-hard. To deal with the NP-hard

cases, we developed collections of assortments with worst-case performance guarantees. Furthermore,

we formulated a tractable convex program whose optimal objective value provides an upper bound

on the optimal expected revenue. In this case, we can compare the expected revenue provided by an

assortment with the upper bound on the optimal expected revenue to get a feel for the optimality gap

of the assortment. By following this approach, our computational experiments tested the performance

of the collections of candidate assortments that we develop.

There are still interesting research questions within the context of assortment optimization under

the nested logit model. In this paper, we assume that the dissimilarity parameters (γ1, . . . , γm) of the

nests and the preference weights {vij : i ∈ M, j ∈ N}, {vi0 : i ∈ M} and v0 of the products and

the no purchase options are constants. As we explain at the end of Section 1, this assumption can

be justified by deriving the nested logit model through a random utility-based choice model, where

the means and correlation structure of the random utilities are assumed to be fixed. Naturally, we can

obtain richer choice models by allowing the means and correlation structure of the random utilities to
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depend on the offered assortment. For example, if a certain product is offered along with some others,

then it may appear more attractive to customers, which can be modeled by allowing the mean utility

of the product to depend on the whole set of offered products. Similarly, the correlation structure of

the random utilities may also depend on which assortment is offered. When we allow the means or

correlation structure of the random utilities to depend on the offered assortment, the preference weights

or the dissimilarity parameters become dependent on the offered assortment as well.

The approach that we use in this paper has difficulties when working with such assortment-dependent

preference weights or dissimilarity parameters. For example, consider a case where the preference weights

of the products in nest i or the dissimilarity parameter of nest i depends on the assortment offered within

this nest. In this case, one difficulty that we run into is that the performance guarantees in Sections 4.2,

5 and 6.1 are obtained by using various continuous relaxations, such as those on the right side of the

second set of constraints in problems (7) and (10), but it is not clear how to construct and work with

such continuous relaxations when we have assortment-dependent preference weights or dissimilarity

parameters. Furthermore, the proofs of the results in these sections use the monotonicity, concavity

and convexity properties of Vi(Si)
γi when viewed as a function of Vi(Si). For example, the proof of

Theorem 10 uses the fact that Vi(Si)
γi and Vi(Si)

1−γi are both increasing in Vi(Si) when γi ≤ 1,

whereas the proof of Theorem 11 uses the fact that Vi(Si)
1−γi is a convex function of Vi(Si) when

γi ≥ 1. Similar monotonicity, concavity and convexity properties are used in the proofs of Theorems

4 and 7 as well. These properties naturally hold when the dissimilarity parameters are constants but

it is not clear how to ensure the analogous monotonicity, concavity and convexity properties when the

preference weights or the dissimilarity parameters depend on the offered assortment.

Another important research direction is to work with more general forms of the nested logit model,

such as the mixed or cross nested logit models. In Section 2, we exploit the fact that the problem

max(S1,...,Sm):Si⊂N,i∈M
∑

i∈M Vi(Si)
γi(Ri(Si) − x) decomposes by the nests. As a result, for a fixed

value of the decision variable x, the second set of constraints in problem (3) separates by the nests

and we can construct candidate assortments by considering each nest separately. Unfortunately, this

separable structure is lost under more general forms of the nested logit model. Therefore, dealing with

assortment-dependent preference weights or dissimilarity parameters and solving assortment problems

under more general forms of the nested logit model remain open for further research.
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A Appendix: Omitted Proofs

A.1 Proof of Theorem 7

Noting that problem (3) is a relaxed version of problem (7), it is enough to show that (α x̂, α ŷ) is a

feasible solution to problem (7). We observe that since (x̂, ŷ) is an optimal solution to problem (4)

after replacing the collection of assortments {Ait : t ∈ Ti} in the second set of constraints with the

nested-by-revenue assortments {Nij : j ∈ N+}, this solution satisfies the second set of constraints for

nest i and the nested-by-revenue assortment Ni0 = ∅. Noting that Vi(∅) = 0, it follows that ŷi ≥ 0 for

all i ∈ M . In this case, the first constraint in problem (4) implies that x̂ ≥ 0.

We fix an arbitrary nest i and let ẑi be an optimal solution to the maximization problem on the

right side of the second set of constraints in problem (7) when this maximization problem is solved at

x = α x̂. By Lemma 6, ẑi is of the form ẑi1 = 1, ẑi2 = 1, . . . , ẑi,k−1 = 1, ẑik ∈ [0, 1], ẑi,k+1 = 0, . . . , ẑin = 0

for some k = 1, . . . , n. We define ρ as ρ = ẑik ∈ [0, 1] and consider two cases.

Case 1. Assume that k ≥ 2. We branch into two subcases.

Case 1.a. Noting that (x̂, ŷ) is the optimal solution to problem (4) after replacing the collection of

assortments {Ait : t ∈ Ti} in the second set of constraints with the nested-by-revenue assortments

{Nij : j ∈ N+}, this solution satisfies the second set of constraints in problem (4) for nest i and the

nested-by-revenue assortment Nik = {1, 2, . . . , k}. Thus, it holds that

ŷi ≥
( k∑

j=1

vij

)γi

[∑k
j=1 rij vij∑k
j=1 vij

− x̂

]
.

For notational convenience, let Rik′ =
∑k′

j=1 rij vij and qik′ =
∑k′

j=1 vij for all k
′ = 1, . . . , n. Multiplying

the inequality above by
Ri,k−1+rik vik ρ
qi,k−1+vik ρ

qik
Rik

, we obtain

Ri,k−1 + rik vik ρ

qi,k−1 + vik ρ

qik
Rik

ŷi ≥ qγiik

[
Ri,k−1 + rik vik ρ

qi,k−1 + vik ρ
−

Ri,k−1 + rik vik ρ

qi,k−1 + vik ρ

qik
Rik

x̂

]
. (19)

It is simple to check that the first derivative of
Ri,k−1+rik vik ρ
qi,k−1+vik ρ with respect to ρ has the same sign as

rik qi,k−1 −Ri,k−1 and we have rik qi,k−1 −Ri,k−1 =
∑k−1

j=1(rik − rij) vij ≤ 0, where the last inequality is

by the fact that ri1 ≥ ri2 ≥ . . . ≥ rin. Thus, it follows that
Ri,k−1+rik vik ρ
qi,k−1+vik ρ is decreasing in ρ so that is

it bounded from above by Ri,k−1/qi,k−1. Also, noting the definitions of Ri(Si), Rik′ and qik′ , we have

Rik′/qik′ = Ri(Nik′). In this case, we can bound the expression that multiplies ŷi and x̂ in (19) as

Ri,k−1 + rik vik ρ

qi,k−1 + vik ρ

qik
Rik

≤
Ri,k−1

qi,k−1

qik
Rik

=
Ri(Ni,k−1)

Ri(Nik)
.

Letting α1
ik = Ri(Ni,k−1)/Ri(Nik) for notational brevity, using the upper bound above in (19) and

noting that ŷi ≥ 0 and x̂ ≥ 0, the inequality in (19) implies that

α1
ik ŷi ≥ qγik

[
Ri,k−1 + rik vik ρ

qi,k−1 + vik ρ
− α1

ik x̂

]
.
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Finally, if we multiply the right side of the inequality above by (qk−1 + vik ρ)
γi/qγik ≤ 1, but not the left

side, then the inequality is above still preserved and we have

α1
ik ŷi ≥ (qi,k−1 + vik ρ)

γi

[
Ri,k−1 + rik vik ρ

qi,k−1 + vik ρ
− α1

ik x̂

]
. (20)

Case 1.b. Noting that (x̂, ŷ) is the optimal solution to problem (4) after replacing the collection of

assortments {Ait : t ∈ Ti} in the second set of constraints with the nested-by-revenue assortments

{Nij : j ∈ N+}, this solution also satisfies the second set of constraints in problem (4) for nest i and

the nested-by-revenue assortment Ni,k−1 = {1, 2, . . . , k − 1}. Thus, we obtain

ŷi ≥
( k−1∑

j=1

vij

)γi

[∑k−1
j=1 rij vij∑k−1
j=1 vij

− x̂

]
= qγii,k−1

[
Ri,k−1

qi,k−1
− x̂

]
.

Multiplying the inequality above by
(qi,k−1+vik ρ)γi

q
γi
i,k−1

Ri,k−1+rik vik ρ
qi,k−1+vik ρ

qi,k−1

Ri,k−1
and arranging the terms, we have

Ri,k−1 + rik vik ρ

(qi,k−1 + vik ρ)1−γi

q1−γi
i,k−1

Ri,k−1
ŷi ≥ (qi,k−1 + vik ρ)

γi

[
Ri,k−1 + rik vik ρ

qi,k−1 + vik ρ
−

Ri,k−1 + rik vik ρ

qi,k−1 + vik ρ

qi,k−1

Ri,k−1
x̂

]
.

Since x̂ ≥ 0, if we make the expression that multiplies x̂ in the inequality above even larger by multiplying

it by
(qi,k−1+vik ρ)γi

q
γi
i,k−1

≥ 1, then the inequality above is still preserved and we have

Ri,k−1 + rik vik ρ

(qi,k−1 + vik ρ)1−γi

q1−γi
i,k−1

Ri,k−1
ŷi ≥ (qi,k−1 + vik ρ)

γi

[
Ri,k−1 + rik vik ρ

qi,k−1 + vik ρ
−

Ri,k−1 + rik vik ρ

(qi,k−1 + vik ρ)1−γi

q1−γi
i,k−1

Ri,k−1
x̂

]
. (21)

It is simple to check that whenever the first derivative of
Ri,k−1+rik vik ρ

(qi,k−1+vik ρ)1−γi
with respect to ρ vanishes,

the second derivative takes a positive value. Therefore, this expression is maximized at either ρ = 0 or

ρ = 1. In this case, we can bound the expression that multiplies ŷi and x̂ in (21) as

Ri,k−1 + rik vik ρ

(qi,k−1 + vik ρ)1−γi

q1−γi
i,k−1

Ri,k−1
≤ 1 ∨ Rik

q1−γi
ik

q1−γi
i,k−1

Ri,k−1
= 1 ∨ Ri(Nik)

Ri(Ni,k−1)

Vi(Nik)
γi

Vi(Ni,k−1)γi
,

where we use a ∨ b = max{a, b}. The two terms in the maximum operator on the right side of the

first inequality are obtained by evaluating the expression on the left side of the inequality at ρ = 0 and

ρ = 1. The equality above follows by noting that Rik′/qik′ = Ri(Nik′) and qik′ = Vi(Nik′). Letting

α2
ik = Ri(Nik)

Ri(Ni,k−1)
Vi(Nik)

γi

Vi(Ni,k−1)
γi

for notational convenience, using the upper bound above in (21) and noting

that ŷi ≥ and x̂ ≥ 0, the inequality in (21) implies that

(1 ∨ α2
ik) ŷi ≥ (qi,k−1 + vik ρ)

γi

[
Ri,k−1 + rik vik ρ

qi,k−1 + vik ρ
− (1 ∨ α2

ik) x̂

]
. (22)

Putting Cases 1.a and 1.b together, we observe that ŷi and x̂ satisfy both (20) and (22), in which

case, they must also satisfy

[α1
ik ∧ (1 ∨ α2

ik)] ŷi ≥ (qi,k−1 + vik ρ)
γi

[
Ri,k−1 + rik vik ρ

qi,k−1 + vik ρ
− [α1

ik ∧ (1 ∨ α2
ik)] x̂

]
. (23)
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Lemma 14 below shows that α ≥ 1 for the value of α given in (6). The proof of that lemma also shows

that α1
ik = Ri(Nik)/Ri(Ni,k−1) ≥ 1. By the definitions of α, α1

ik and α2
ik, we obtain α ≥ α1

ik ∧ α2
ik as

well. In this case, we have

α1
ik ∧ (1 ∨ α2

ik) = (α1
ik ∧ 1) ∨ (α1

ik ∧ α2
ik) = 1 ∨ (α1

ik ∧ α2
ik) ≤ α.

Thus, replacing the expression that multiplies ŷi and x̂ in (23) with an even larger expression α, the

inequality is still preserved and we obtain

α ŷi ≥ (qi,k−1 + vik ρ)
γi

[
Ri,k−1 + rik vik ρ

qi,k−1 + vik ρ
− α x̂

]
. (24)

Case 2. Assume that k = 1. Since (x̂, ŷ) is the optimal solution to problem (4) after replacing the

collection of assortments {Ait : t ∈ Ti} in the second set of constraints with the nested-by-revenue

assortments {Nij : j ∈ N+}, this solution satisfies the second set of constraints in problem (4) for nest i

and the nested-by-revenue assortment Ni1 = {1}. Therefore, we have ŷi ≥ vγii1
[
ri1 vi1
vi1

− x̂
]
. Since α ≥ 1,

ŷi ≥ 0 and x̂ ≥ 0, this inequality yields α ŷi ≥ vγii1
[
ri1 vi1
vi1

− α x̂
]
. If we multiply the right side of the last

inequality by ργi ≤ 1, but not the left side, then the inequality is still preserved and we obtain

α ŷi ≥ (vi1 ρ)
γi

[
ri1 vi1 ρ

vi1 ρ
− α x̂

]
. (25)

Putting Cases 1 and 2 together, we succinctly write the inequalities in (24) and (25) as

α ŷi ≥
( k−1∑

j=1

vij ẑij + vik ẑik

)γi

[∑k−1
j=1 rij vij ẑij + rik vik ẑik∑k−1

j=1 vij ẑij + vik ẑik
− α x̂

]

= max
zi∈[0,1]n

{(∑
j∈N

vij zij

)γi

[∑
j∈N rij vij zij∑
j∈N vij zij

− α x̂

]}
,

where the equality follows from the definition of ẑi. Since the choice of nest i is arbitrary, the inequality

above holds for all i ∈ M , which implies that the solution (α x̂, α ŷ) satisfies the second set of constraints

in problem (7). Since (x̂, ŷ) is an optimal solution to problem (4), we have v0 x̂ ≥
∑

i∈M ŷi, which implies

that v0 α x̂ ≥
∑

i∈M α ŷi. Therefore, the solution (α x̂, α ŷ) satisfies the first constraint in problem (7)

as well and we obtain the desired result. 2

Lemma 14 Using α to denote the expression in (6), if we have γi > 1 for some i ∈ M , then α ≥ 1.

Proof. Noting that Ri(Nij) =
∑j

k=1 rik vik/
∑j

k=1 vik, Rij(Nij) is the weighted average of the revenues

of the first j products in nest i. Since ri1 ≥ ri2 ≥ . . . ≥ rin, it follows that Ri(Ni,j−1) ≥ Ri(Nij). On

the other hand, since γi > 1, we have

Ri(Nij)Vi(Nij)
γi =

∑j
k=1 rij vij∑j
k=1 vij

( j∑
k=1

vij

)γi
≥

∑j−1
k=1 rij vij∑j−1
k=1 vij

( j−1∑
k=1

vij

)γi
= Ri(Ni,j−1)Vi(Ni,j−1)

γi .

Therefore, both terms of the minimum operator in the expression in (6) for nest i are at least one, which

implies that α is also at least one. 2
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A.2 Proof of Theorem 8

Assume that we are given any instance of the partition problem with sizes (c1, . . . , cn) and
∑n

j=1 cj =

2T . We define an instance of the assortment feasibility problem as follows. There are two nests. The

preference weight for the option of not choosing any of the nests is v0 = 0. The dissimilarity parameters

of the two nests are γ1 = γ2 = 1/2. For the first nest, the preference weight of the no purchase option

is v10 = 2. This nest has only one product in it. The revenue and the preference weight associated

with this product are r11 = 2 (T + 1)(T + 3) and v11 = 2 (2T + 1). For the second nest, the preference

weight of the no purchase option is v20 = 1. The second nest has n products in it. The revenues of the

products in the second nest are identical and they are given by r2j = (T +1)(2T +1) for all j = 1, . . . , n.

The preference weights of the products in the second nest are given by v2j = cj for all j = 1, . . . , n. We

set the expected revenue threshold in the assortment feasibility problem as K = (T + 2)(2T + 1).

The first observation that if we only offer the product in the first nest, then the expected revenue

we generate from the first nest is

R1({1}) =
r11 v11

v01 + v11
=

2 (T + 1)(T + 3) 2 (2T + 1)

2 + 2 (2T + 1)
= (T + 3)(2T + 1),

which is larger than the revenues of the products in the second nest. Thus, if we want to get the largest

possible expected revenue, then it is always optimal to offer the product in the first nest. Therefore,

the only question for the assortment feasibility problem is to choose a subset S among the products in

the second nest that makes sure that we obtain an expected revenue of K = (T +2)(2T +1) or more. If

we offer a subset S of the products in the second nest together with the product in the first nest, then

the expected revenue is Q1({1}, S)R1({1}) +Q2({1}, S)R2(S), which evaluates to√
2 + 2 (2T + 1)√

2 + 2 (2T + 1) +
√

1 +
∑

j∈S cj

2 (T + 1)(T + 3) 2 (2T + 1)

2 + 2 (2T + 1)

+

√
1 +

∑
j∈S cj√

2 + 2 (2T + 1) +
√

1 +
∑

j∈S cj

(T + 1)(2T + 1)
∑

j∈S cj

1 +
∑

j∈S cj
.

Thus, arranging the terms in the expression above, the assortment feasibility problem asks the question

of whether there is a subset S such that

2(T + 1)(T + 3) 2 (2T + 1)√
2 + 2(2T + 1)

+ (T + 1)(2T + 1)

∑
j∈S cj√

1 +
∑

j∈S cj√
2 + 2(2T + 1) +

√
1 +

∑
j∈S cj

≥ (T + 2)(2T + 1).

If we cancel the terms in the first fraction in the numerator on the left side and move the denominator

to the right, then the inequality above is equivalent to

2 (T + 3)(2T + 1)
√
T + 1 + (T + 1)(2T + 1)

∑
j∈S cj√

1 +
∑

j∈S cj

≥ 2 (T + 2)(2T + 1)
√
T + 1 + (T + 2)(2T + 1)

√
1 +

∑
j∈S cj .
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Canceling the term 2T + 1 from both sides of the inequality above, multiplying the inequality by√
1 +

∑
j∈S cj and adding and subtracting one from the term

∑
j∈S cj , the inequality above can be

written as

2(T + 3)
√
T + 1

√
1 +

∑
j∈S cj + (T + 1)

(
1 +

∑
j∈S

cj

)
− (T + 1)

≥ 2 (T + 2)
√
T + 1

√
1 +

∑
j∈S cj + (T + 2)

(
1 +

∑
j∈S

cj

)
.

Finally, collecting all of the terms to the right, the last inequality becomes(
1 +

∑
j∈S

cj

)
− 2

√
T + 1

√
1 +

∑
j∈S cj + (T + 1) ≤ 0.

Since the last inequality is equivalent to (
√

1 +
∑

j∈S cj −
√
T + 1)2 ≤ 0, there exists an assortment

with an expected revenue of K = (T + 2)(2T + 1) or more if and only if there exists a subset S

with (
√

1 +
∑

j∈S cj −
√
T + 1)2 ≤ 0. However, the only way for the last inequality to hold is to

have
∑

j∈S cj = T . Therefore, finding an assortment that yields an expected revenue of K or more is

equivalent to finding a subset S that satisfies
∑

j∈S cj = T and the latter statement is precisely what

the partition problem is interested in. 2

A.3 Proof of Theorem 10

Since problem (10) is equivalent to problem (3), it is enough to show that (2 x̂, 2 ŷ) is a feasible solution

to problem (10). First, note that x̂ ≥ 0. To see this claim, if x̂ < 0, then the right sides of the second

set of constraints in problem (4) are strictly positive for nonempty assortments so that ŷi > 0 for all

i ∈ M . In this case, (x̂, ŷ) cannot satisfy the first constraint in problem (4), establishing the claim.

We fix an arbitrary nest i and let ϵ̂i be the optimal solution to the maximization problem on the

right side of the second set of constraints in problem (10) when this maximization problem is solved

at x = 2 x̂. Finally, let ẑi(ϵ̂i) be the optimal solution to problem (11) when this continuous knapsack

problem is solved at ϵi = ϵ̂i. We consider two cases.

Case 1. Assume that the solution ẑi(ϵ̂i) has exactly one fractional component. We denote this factional

component by k ∈ N . Since (x̂, ŷ) is the optimal solution to problem (4) after replacing the collection

assortments {Ait : t ∈ Ti} in the second set of constraints with {Ŝi(ϵi) : ϵi ∈ [0,∞]}∪{{j} : j ∈ N}, the
solution (x̂, ŷ) satisfies the second set of constraints in problem (4) for nest i and the assortment Ŝi(ϵ̂i)

and we obtain

ŷi ≥ Vi(Ŝi(ϵ̂i))
γi(Ri(Ŝi(ϵ̂i))− x̂)

=

∑
j∈Ŝi(ϵ̂i)

rij vij

(vi0 +
∑

j∈Ŝi(ϵ̂i)
vij)1−γi

−
(
vi0 +

∑
j∈Ŝi(ϵ̂i)

vij

)γi
x̂ ≥

∑
j∈Ŝi(ϵ̂i)

rij vij

(vi0 + ϵ̂i)1−γi
− (vi0 + ϵ̂i)

γi x̂, (26)

where the second inequality above follows by γi ≤ 1 and noting that we have
∑

j∈Ŝi(ϵ̂i)
vij ≤∑

j∈N vij ẑij(ϵ̂i) ≤ ϵ̂i by the definitions of Ŝi(ϵ̂i) and ẑi(ϵ̂i). Similarly, the solution (x̂, ŷ) satisfies the
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second set of constraints in problem (4) for nest i and the singleton assortment {k} so that

ŷi ≥ Vi({k})γi(Ri({k})− x̂) =
rik vik

(vi0 + vik)1−γi
− (vi0 + vik)

γi x̂ ≥ rik vik
(vi0 + ϵ̂i)1−γi

− (vi0 + ϵ̂i)
γi x̂, (27)

where the second inequality above follows from the fact that we must have vik ≤ ϵ̂i for ẑik(ϵ̂i) to take

a fractional value. Since Ŝi(ϵ̂i) includes all strictly positive and integer-valued components of ẑi(ϵ̂i)

and k is the only component of ẑi(ϵ̂i) that takes a fractional value, we have
∑

j∈Ŝi(ϵ̂i)
rij vij + rik vik ≥∑

j∈N rij vij ẑij(ϵ̂i) = K̂i(ϵ̂i), where the equality follows by the definition of ẑi(ϵ̂i). Using this relationship

and adding (26) and (27), we have

2 ŷi ≥
∑

j∈Ŝi(ϵ̂i)
rij vij + rik vik

(vi0 + ϵ̂i)1−γi
− (vi0 + ϵ̂i)

γi 2 x̂ ≥ K̂i(ϵ̂i)

(vi0 + ϵ̂i)1−γi
− (vi0 + ϵ̂i)

γi 2 x̂

≥ Ki(ϵ̂i)

(vi0 + ϵ̂i)1−γi
− (vi0 + ϵ̂i)

γi 2 x̂ = max
ϵi≥0

{
(vi0 + ϵi)

γi

[
Ki(ϵi)

vi0 + ϵi
− 2 x̂

]}
, (28)

where the last inequality follows from the fact that problem (11) is a relaxation of problem (9) and the

last equality follows from the definition of ϵ̂i.

Case 2. Assume that the solution ẑi(ϵ̂i) does not have any fractional components. In this case, Ŝi(ϵ̂i)

includes all strictly positive components of ẑi(ϵ̂i) and we obtain
∑

j∈Ŝi(ϵ̂i)
rij vij =

∑
j∈N rij vij ẑij(ϵ̂i) =

K̂i(ϵ̂i). Using this relationship and following the same argument that we used to obtain (26) in the first

case, we have

ŷi ≥
∑

j∈Ŝi(ϵ̂i)
rij vij

(vi0 + ϵ̂i)1−γi
− (vi0 + ϵ̂i)

γi x̂ ≥ Ki(ϵ̂i)

(vi0 + ϵ̂i)1−γi
− (vi0 + ϵ̂i)

γi x̂.

Multiplying the inequality above by two, we obtain

2 ŷi ≥ 2
Ki(ϵ̂i)

(vi0 + ϵ̂i)1−γi
− (vi0 + ϵ̂i)

γi 2 x̂

≥ Ki(ϵ̂i)

(vi0 + ϵ̂i)1−γi
− (vi0 + ϵ̂i)

γi 2 x̂ = max
ϵi≥0

{
(vi0 + ϵi)

γi

[
Ki(ϵi)

vi0 + ϵi
− 2 x̂

]}
, (29)

where the last inequality follows from the definition of ϵ̂i.

Collecting (28) and (29) in the two cases, the solution (2 x̂, 2 ŷ) satisfies the second set of constraints

for nest i in problem (10). Noting that our choice of nest i is arbitrary, the second set of constraints in

problem (10) is satisfied by the solution (2 x̂, 2 ŷ). Finally, since the solution (x̂, ŷ) is optimal to problem

(4), we have v0 x̂ ≥
∑

i∈M ŷi, which implies that v0 2 x̂ ≥
∑

i∈M 2 ŷi. Therefore, the solution (2 x̂, 2 ŷ)

satisfies the first constraint in problem (10) as well and we obtain the desired result. 2

A.4 Proof of Theorem 11

The proof follows from a reasoning similar to those in the proofs of Theorems 7 and 10, but there are

some key new points. Following an argument similar to the one at the beginning of the proof of Theorem

10, we have x̂ ≥ 0. We fix an arbitrary nest i and consider three cases.
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Case 1. Assume that γi > 1 and ŷi ≥ 0. We let ẑi be an optimal solution to the problem

max
zi∈[0,1]n

{(
vi0 +

∑
j∈N

vij zij

)γi

[ ∑
j∈N rij vij zij

vi0 +
∑

j∈N vij zij
− β x̂

]}
.

Using the same idea in the proof of Lemma 6, we can show that ẑi is of the form ẑi1 = 1, ẑi2 =

1, . . . , ẑi,k−1 = 1, ẑik ∈ [0, 1], ẑi,k+1 = 0, . . . , ẑin = 0 for some k = 1, . . . , n. We define ρ as ρ = ẑik ∈ [0, 1]

and branch into two subcases.

Case 1.a. Assume that k ≥ 2. Noting that (x̂, ŷ) is the optimal solution to problem (4)

after replacing the collection of assortments {Ait : t ∈ Ti} in the second set of constraints with

{Nk′
ij : k′ ∈ N, j = 0, . . . , k′} ∪ {{j} : j ∈ N}, this solution satisfies the second set of constraints in

problem (4) for nest i and the assortment Nn
ik = {1, 2, . . . , k}. Thus, it holds that

ŷi ≥
(
vi0 +

k∑
j=1

vij

)γi

[ ∑k
j=1 rij vij

vi0 +
∑k

j=1 vij
− x̂

]
.

For notational convenience, let Rik′ =
∑k′

j=1 rij vij and qik′ =
∑k′

j=1 vij for all k′ = 1, . . . , n. The

expression in the numerator of the fraction above corresponds to Rik and if we replace the expression

Rik with the smaller expression Ri,k−1+rik vik ρ, then the inequality above still holds. Also, since β ≥ 1,

we can increase ŷi on the left side to β ŷi and the inequality still holds. Thus, the inequality above yields

β ŷi ≥ (vi0 + qik)
γi−1 (Ri,k−1 + rik vik ρ − (vi0 + qik) x̂). Since ŷi ≥ 0, if we multiply the right side of

the last inequality by (vi0 + qi,k−1 + vik ρ)
γi−1/(vi0 + qik)

γi−1 ≤ 1, but not the left side, then the last

inequality is preserved and we obtain β ŷi ≥ (vi0+qi,k−1+vik ρ)
γi−1 (Ri,k−1+rik vik ρ−(vi0+qik) x̂). We

write this inequality as

β ŷi ≥ (vi0 + qi,k−1 + vik ρ)
γi

[
Ri,k−1 + rik vik ρ

vi0 + qi,k−1 + vik ρ
− vi0 + qik

vi0 + qi,k−1 + vik ρ
x̂

]

≥ (vi0 + qi,k−1 + vik ρ)
γi

[
Ri,k−1 + rik vik ρ

vi0 + qi,k−1 + vik ρ
− β x̂

]
, (30)

where the second inequality above follows by (vi0 + qik)/(vi0 + qi,k−1 + vik ρ) ≤ Vi(N
n
ik)/Vi(N

n
i,k−1) ≤ β.

Case 1.b. Assume that k = 1. In this case, if nest i is a partially-captured nest with vi0 > 0, then we

can use the same approach in Case 1.a to show that the inequality in (30) is satisfied with k = 1. On

the other hand, if nest i is a fully-captured nest with vi0 = 0, then we can use the same approach in

Case 2 in the proof of Theorem 7 to show that the inequality in (30) is satisfied with k = 1. Thus, the

inequality in (30) holds under Case 1.b as well. Putting Cases 1.a and 1.b together, we have

β ŷi ≥ (vi0 + qi,k−1 + vik ρ)
γi

[
Ri,k−1 + rik vik ρ

vi0 + qi,k−1 + vik ρ
− β x̂

]

=
(
vi0 +

∑
j∈N

vij ẑij

)γi

[ ∑
j∈N rij vij ẑij

vi0 +
∑

j∈N vij ẑij
− β x̂

]
≥ Vi(Si)

γi(Ri(Si)− β x̂)
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for all Si ⊂ N , where the second inequality follows from the definition of ẑi. Therefore, the solution

(β x̂, β ŷ) satisfies the second set of constraints for nest i in problem (3).

Case 2. Assume that γi > 1 and ŷi < 0. We let ẑi be an optimal solution to the problem

max
zi∈[0,1]n

{∑
j∈N

rij vij zij − β x̂
(
vi0 +

∑
j∈N

vij zij

)
− β ŷi

(
vi0 +

∑
j∈N

vij zij

)1−γi

}
. (31)

Following the idea in the proof of Lemma 6, we can show that ẑi is of the form ẑi1 = 1, ẑi2 =

1, . . . , ẑi,k−1 = 1, ẑik ∈ [0, 1], ẑi,k+1 = 0, . . . , ẑin = 0 for some k = 1, . . . , n. We claim that we have

either ẑik = 0 or ẑik = 1, implying that the optimal solution to the problem above corresponds to

a nested-by-revenue assortment. To get a contradiction, we define ρ as ρ = ẑik and assume that

ρ ∈ (0, 1). Since setting ẑi1 = 1, ẑi2 = 1, . . . , ẑi,k−1 = 1, ẑik = ρ, ẑi,k+1 = 0, . . . , ẑin = 0 yields an optimal

solution to problem (31), if we fix all of the decision variables except for zik at their optimal values in

the problem above and optimize only over the decision variable zik, then ρ ∈ (0, 1) must be an optimal

solution. However, since γi > 1 and ŷi < 0, the objective function of the problem above is strictly

convex and its optimal solution must occur at either ρ = 0 or ρ = 1. Thus, the claim holds, implying

that the optimal solution to problem (31) corresponds to a nested-by-revenue assortment and we denote

this nested by revenue assortment by {1, 2, . . . , k} for some k ∈ N .

Noting that (x̂, ŷ) is the optimal solution to problem (4) after replacing the collection of assortments

{Ait : t ∈ Ti} in the second set of constraints with {Nk′
ij : k′ ∈ N, j = 0, . . . , k′} ∪ {{j} : j ∈ N}, this

solution satisfies the second set of constraints in problem (4) for nest i and the assortment Nn
ik =

{1, 2, . . . , k}. Therefore, it follows that ŷi ≥ Vi(N
n
ik)

γi (Ri(N
n
ik) − x̂). Multiplying both sides of this

inequality with β, we obtain

β ŷi ≥ β Vi(N
n
ik)

γi (Ri(N
n
ik)− x̂) ≥ Vi(N

n
ik)

γi (Ri(N
n
ik)− β x̂),

where the second inequality uses the fact that β ≥ 1. Arranging the terms in the inequality

β ŷi ≥ Vi(N
n
ik)

γi (Ri(N
n
ik)−β x̂) by using the definitions of Vi(Si) and Ri(Si), we obtain

∑
j∈Nn

ik
rij vij −

Vi(N
n
ik)β x̂− Vi(N

n
ik)

1−γi β ŷi ≤ 0. Noting that the optimal solution to problem (31) corresponds to the

nested-by-revenue assortment Nn
ik = {1, 2, . . . , k}, the last inequality shows that the optimal objective

value of problem (31) is negative. Therefore, for all Si ⊂ N , we have∑
j∈Si

rij vij − Vi(Si)β x̂− Vi(Si)
1−γi β ŷi

≤ max
zi∈[0,1]n

{∑
j∈N

rij vij zij − β x̂
(
vi0 +

∑
j∈N

vij zij

)
− β ŷi

(
vi0 +

∑
j∈N

vij zij

)1−γi

}
≤ 0.

Arranging the terms in the inequality
∑

j∈Si
rij vij − Vi(Si)β x̂ − Vi(Si)

1−γi β ŷi ≤ 0 by using the

definitions of Vi(Si) and Ri(Si), we obtain β ŷi ≥ Vi(Si)
γi (Ri(Si) − β x̂) for all Si ⊂ N , which shows

that the solution (β x̂, β ŷ) satisfies the second set of constraints for nest i in problem (3).

Case 3. Assume that γi ≤ 1. In this case, by using a line of reasoning that is similar to the one in

the proof of Theorem 10, we can show that 2 ŷi ≥ Vi(Si)
γi (Ri(Si) − 2 x̂) for all Si ⊂ N . Multiplying
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this inequality by β/2 ≥ 1, we obtain β ŷi ≥ Vi(Si)
γi (β Ri(Si)/2− β x̂) ≥ Vi(Si)

γi (Ri(Si)− β x̂) for all

Si ⊂ N . The last inequality shows that the solution (β x̂, β ŷ) satisfies the second set of constraints for

nest i in problem (3).

Collecting the three cases together, the solution (β x̂, β ŷ) satisfies the second set of constraints for

nest i in problem (3). Noting that our choice of nest i is arbitrary, the second set of constraints in

problem (3) is satisfied by the solution (β x̂, β ŷ). Finally, since the solution (x̂, ŷ) is optimal to problem

(4), we have v0 x̂ ≥
∑

i∈M ŷi, which implies that v0 β x̂ ≥
∑

i∈M β ŷi. Therefore, the solution (β x̂, β ŷ)

satisfies the first constraint in problem (3) as well and we obtain the desired result. 2

A.5 Knapsack Problems with Equality Constraints

In this section, we begin by giving a dynamic program that obtains the optimal solution to problem (13)

in O(n vUi ) time. Following this result, we develop a tractable method to obtain approximate solutions

to problem (15). To obtain the optimal solution to problem (13) through a dynamic program, we let

ζi(k, bi) be the optimal objective value of problem (13) when we focus only on the first k products in

this problem and replace the right side of the constraint with bi. In other words, we have

ζi(k, bi) = max
Si⊂{1,...,k}

{ ∑
j∈Si

rij vij : vi0 +
∑
j∈Si

vij = bi

}

with the convention that ζi(k, bi) = −∞ when the problem on the right side above is infeasible. We note

that ζi(n, ϵi) corresponds to the optimal objective value of problem (13). In this case, ζi(k, bi) satisfies

the dynamic programming recursion

ζi(k, bi) = max
{
rik vik + ζi(k − 1, bi − vik), ζi(k − 1, bi)

}
with the boundary condition that ζi(0, vi0) = 0 and ζi(0, bi) = −∞ for all bi ∈ {0, 1, . . . , vUi } \ {vi0}. We

can use the dynamic programming recursion above to compute ζi(n, bi) for all bi ∈ {0, 1, . . . , vUi } in

O(n vUi ) time. In this case, the values in the set {ζi(n, bi) : bi = 0, 1, . . . , vUi } correspond to the values

{Gi(ϵi) : ϵi = 0, 1, . . . , vUi }, as desired. The dynamic program above is similar to the one that is used

for solving the partition and knapsack problems; see Garey and Johnson (1979).

In the rest of this section, we focus on obtaining approximate solutions to problem (15). For

notational brevity, we omit the subscripts for the nest and use the decision variables z = (z1, . . . , zn) to

consider the problem

Ĝl = max

{
n∑

j=1

rj vj zj : δ
l−1 ≤ v0 +

n∑
j=1

vj zj ≤ δl, z ∈ {0, 1}n
}
. (32)

We are interested in finding a feasible solution to the problem above whose objective value deviates

from the optimal objective value by no more than a factor of δ. To that end, we begin by classifying

the products in the problem above into two categories. A product j satisfying vj > (δ− 1) δl−1 is called

a large product, whereas a product j satisfying vj ≤ (δ − 1) δl−1 is called a small product. We use NL

and NS to respectively denote the sets of large and small products, with N = NL ∪ NS . We observe
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that an optimal solution to problem (32) cannot include ⌈δ/(δ−1)⌉ or more large products. Otherwise,

the constraint in problem (32) evaluates to more than ⌈δ/(δ − 1)⌉ (δ − 1) δl−1 ≥ δl, violating its upper

bound. For notational brevity, we set q = ⌈δ/(δ−1)⌉ throughout this section so that an optimal solution

to problem (32) cannot include q or more large products.

To obtain a tractable approximation to problem (32), we consider a special linear programming

relaxation of this problem. In particular, we choose a subset JL ⊂ NL of large products and a subset

JS ⊂ NS of small products and solve the problem

max

n∑
j=1

rj vj zj (33)

s.t.

n∑
j=1

vj zj ≤ δl

zj = 1 ∀ j ∈ JL ∪ JS

zj = 0 ∀ j ∈ NL \ JL

0 ≤ zj ≤ 1(rj vj ≤ min
k∈JS

rk vk) ∀ j ∈ NS \ JS .

The problem above is a continuous knapsack problem with only an upper bound constraint and the

values of some of the variables are fixed at zero or one. In particular, the decision variables corresponding

to the products in JL and JS are set at one. The decision variables corresponding to the large products

in NL \ JL are set to zero. If the objective function coefficient of a small product in NS \ JS is smaller

than the smallest of the objective function coefficient of the small products in JS , then the decision

variable corresponding to this small product is allowed to take values between zero and one. Otherwise,

the decision variable corresponding to this product is fixed at zero. Noting that the utility of product j

in problem (33) is given by rj vj and the utility-to-space consumption ratio of product j is given by rj ,

we can solve problem (33) by using the following procedure. We put all of the products in JL ∪ JS into

the knapsack and drop these products from consideration. Also, we drop the products in NL \ JL from

consideration immediately. We order the products in NS with respect to their utilities. If there are any

products in NS \JS whose utilities exceed the smallest of the utilities in JS , then we drop these products

from consideration as well. Considering the remaining products in NS\JS , we order these products with

respect to their utility-to-space consumption ratios and fill the knapsack starting from the products with

the largest utility-to-space consumption ratios. Therefore, assuming that we already have the orderings

of the items with respect to their utilities and utility-to-space consumption ratios, we can solve problem

(33) in O(n) time. It is also useful to observe that the optimal solution to problem (33) that we obtain

in this fashion includes at most one fractional component. The continuous knapsack problem in (33) is

inspired by Frieze and Clarke (1984), where the authors use a similar continuous knapsack problem to

construct polynomial-time approximation schemes for multi-dimensional knapsack problems. We use

ẑ(JL, JS) to denote the optimal solution to problem (33), where our notation emphasizes the fact that

the solution to this problem depends on the choice of JL and JS .

Using the solution ẑ(JL, JS), we define the assortment Ŝ(JL, JS) = {j ∈ N : ẑj(J
L, JS) = 1},

including to the products that take strictly positive and integer values in the solution ẑ(JL, JS). By
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using the discussion above, for given JL and JS , we can compute Ŝ(JL, JS) in O(n) time. We use ℘L

to denote the set of subsets of NL with cardinality not exceeding q. Similarly, we use ℘S to denote the

set of subsets of NS with cardinality not exceeding q. In this case, the next proposition shows that

the collection of assortments {Ŝ(JL, JS) : JL ∈ ℘L, JS ∈ ℘S} includes a feasible solution to problem

(32) such that the objective value provided by this feasible solution deviates from the optimal objective

value of problem (32) by at most a factor of δ.

Proposition 15 Assuming that problem (32) has a feasible solution, there exists an assortment in the

collection {Ŝ(JL, JS) : JL ∈ ℘L, JS ∈ ℘S} such that this assortment yields a feasible solution to

problem (32) and the objective value provided by this assortment deviates from the optimal objective

value of problem (32) by at most a factor of δ. Furthermore, all of the assortments in the collection

{Ŝ(JL, JS) : JL ∈ ℘L, JS ∈ ℘S} can be constructed in O(q2 n2q+1) time.

Proof. By the definitions of ℘L and ℘S , we have |℘L| = |℘S | = O(q nq). Therefore, there are O(q2 n2q)

assortments in the collection {Ŝ(JL, JS) : JL ∈ ℘L, JS ∈ ℘S}. Noting the discussion right before the

proposition, each one of these assortments can be constructed in O(n) time. Thus, all of the assortments

in the collection {Ŝ(JL, JS) : JL ∈ ℘L, JS ∈ ℘S} can be constructed in O(q2 n2q+1) time.

Letting z̃ be the optimal solution to problem (32), we define the assortment S̃ corresponding to this

solution as S̃ = {j ∈ N : z̃j = 1}. We let J̃L and J̃S to respectively be the large and small products in

the assortment S̃. By the discussion that follows problem (32), we must have |J̃L| ≤ q, implying that

J̃L ∈ ℘L. If we assume that |J̃S | ≤ q, then we have J̃S ∈ ℘S as well. Thus, the assortment Ŝ(J̃L, J̃S) is

included in the collection {Ŝ(JL, JS) : JL ∈ ℘L, JS ∈ ℘S}. Furthermore, by the definitions of ẑ(JL, JS)

and Ŝ(JL, JS), the assortment Ŝ(J̃L, J̃S) includes all of the products in J̃L and J̃S , which implies that

Ŝ(J̃L, J̃S) ⊃ J̃L ∪ J̃S = S̃ so that Ŝ(J̃L, J̃S) includes all of the products in S̃. Thus, Ŝ(J̃L, J̃S) must

provide an objective value for problem (32) that is at least as large as the one provided by S̃ and we

conclude that Ŝ(J̃L, J̃S) is an optimal solution to problem (32). This establishes the desired result

under the assumption that |J̃S | ≤ q. In the rest of the proof, we assume that |J̃S | > q.

We let AS be the subset of J̃S that includes the q products in J̃S with the largest utilities. In other

words, we have AS ⊂ J̃S , |AS | = q and rj vj ≤ mink∈AS rk vk for all j ∈ J̃S \AS . Consider the solution

ẑ(J̃L, AS) that we obtain by solving problem (33) with JL = J̃L and JS = AS . If this solution has a

fractional component j′, then by the fourth set of constraints in problem (33), this component must

satisfy rj′ vj′ ≤ rk vk for all k ∈ AS . Also, the component j′ must be in NS \AS so that the product j′

is a small product. In this case, noting that the optimal objective value of problem (32) is given by Ĝl,

we have Ĝl =
∑

j∈J̃L rj vj +
∑

j∈J̃S rj vj =
∑

j∈J̃L rj vj +
∑

j∈AS rj vj +
∑

j∈J̃S\AS rj vj ≥
∑

j∈AS rj vj ≥
q rj′ vj′ , where the first equality is by the fact that S̃ = J̃L ∪ J̃S is an optimal solution to problem (32)

and the second inequality is by the fact that rj′ vj′ ≤ rk vk for all k ∈ AS and |AS | = q. The last chain

of inequalities yields rj′ vj′ ≤ Ĝl/q.

We claim that the assortment Ŝ(J̃L, AS) provides a feasible solution to problem (32). First, we show

this claim under the assumption that the solution ẑ(J̃L, AS) consumes all of the knapsack capacity in

51



problem (33) when we solve this problem with JL = J̃L and JS = AS . We use j′ to denote the

fractional component of ẑ(J̃L, AS) when there is one. By the discussion in the paragraph above, j′ must

be a small product. Since the solution ẑ(J̃L, AS) consumes all of the knapsack capacity, we have δl =∑n
j=1 vj ẑj(J̃

L, AS) ≤
∑

j∈Ŝ(J̃L,AS) vj+vj′ ≤
∑

j∈Ŝ(J̃L,AS)+(δ−1) δl−1, where the first inequality follows

from the fact that Ŝ(J̃L, AS) includes all components of ẑ(J̃L, AS) with the exception of j′ and the second

inequality follows from the fact that product j′ is a small product. From the last chain of inequalities,

it follows that
∑

j∈Ŝ(J̃L,AS) vj ≥ δl − (δ − 1) δl−1 = δl−1 so that the assortment Ŝ(J̃L, AS) satisfies

the lower bound constraint in problem (32). Furthermore, noting that δl ≥
∑n

j=1 vj ẑj(J̃
L, AS) =∑

j∈Ŝ(J̃L,AS) vj + vj′ zj′(J̃
L, AS) ≥

∑
j∈Ŝ(J̃L,AS) vj , the assortment Ŝ(J̃L, AS) satisfies the upper bound

constraint in problem (32) as well and the claim follows.

Second, we show the claim under the assumption that the solution ẑ(J̃L, AS) does not consume all of

the knapsack capacity in problem (33) when we solve this problem with JL = J̃L and JS = AS . We recall

that the discussion at the beginning of the third paragraph of the proof shows that rj vj ≤ mink∈AS rk vk

for all j ∈ J̃S \ AS . Thus, if we solve problem (33) with JL = J̃L and JS = AS , then by the fourth

set of constraints in this problem, the decision variables corresponding to the products in J̃S \ AS are

free to take values between zero and one. In this case, since the solution ẑ(J̃L, AS) does not consume

all of the knapsack capacity in problem (33) and all of the objective function coefficients are positive,

the decision variables corresponding to the products in J̃S \AS must take value one. Furthermore, the

decision variables corresponding to the products in J̃L and AS are fixed at one when we solve problem

(33) with JL = J̃L and JS = AS . Therefore, if we solve problem (33) with JL = J̃L and JS = AS , then

the decision variables corresponding to the products in J̃L, AS and J̃S \AS take value one, which implies

that δl−1 ≤
∑

j∈S̃ vj =
∑

j∈J̃L vj +
∑

j∈AS vj +
∑

j∈J̃S\AS vj ≤
∑n

j=1 vj zj(J̃
L, AS) =

∑
j∈Ŝ(J̃L,AS) vj ,

where the first inequality follows from the fact that S̃ is an optimal solution to problem (32), the first

equality uses the fact that S̃ = J̃L ∪ J̃S , the second inequality follows from the fact that the products

in J̃L, AS and J̃S \ AS all take value one when we solve problem (33) with JL = J̃L and JS = AS

and the last equality follows from the fact that if the solution ẑ(J̃L, AS) does not consume all of the

knapsack capacity, then it cannot have any fractional components. On the other hand, since the solution

ẑ(J̃L, AS) does not have any fractional components and it is an optimal solution to problem (33), we

obtain δl ≥
∑n

j=1 vj zj(J̃
L, AS) =

∑
j∈Ŝ(J̃L,AS) vj . The last two chains of inequalities show that the

assortment Ŝ(J̃L, AS) satisfies the constraint in problem (32) and the claim holds.

We proceed to checking the objective function value provided by the assortment Ŝ(J̃L, AS). To

that end, letting ζ(JL, JS) be the optimal objective value of problem (33), we begin by arguing that

Ĝl ≤ ζ(J̃L, AS). To establish this inequality, we observe that by the definitions of J̃L and J̃S , the

products in J̃L and J̃S take value one in the optimal solution to problem (32). On the other hand, if

we solve problem (33) with JL = J̃L and JS = AS , then the products in J̃L and AS take value one

in the optimal solution. Furthermore, as discussed at the beginning of the previous paragraph, the

products in J̃S \ AS are free to take values between zero and one when we solve problem (33). Thus,

the optimal solution to problem (32) is a feasible solution to problem (33) when we solve this problem

with JL = J̃L and JS = AS , which implies that Ĝl ≤ ζ(J̃L, AS) as desired. In this case, using j′

to denote the fractional component of ẑ(J̃L, AS) when there is one, we obtain Ĝl ≤ ζ(J̃L, AS) =
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∑n
j=1 rj vj ẑj(J̃

L, AS) ≤
∑

j∈Ŝ(J̃L,AS) rj vj + rj′ vj′ ≤
∑

j∈Ŝ(J̃L,AS) rj vj + Ĝl/q, where the last inequality

follows by noting that rj′ vj′ ≤ Ĝl/q, which is shown in the third paragraph of the proof. Focusing

on the first and last expressions in the last chain of inequalities and noting that q = ⌈δ/(δ − 1)⌉, we
get

∑
j∈Ŝ(J̃L,AS) rj vj ≥ ((q − 1)/q)Ĝl ≥ Ĝl/δ. So, the assortment Ŝ(J̃L, AS) corresponds to a feasible

solution to problem (32), providing an objective value to this problem that deviates from the optimal

objective value by no more than a factor of δ. Furthermore, noting that |J̃L| ≤ q and |AS | = q, we have

Ŝ(J̃L, AS) ∈ {Ŝ(JL, JS) : JL ∈ ℘L, JS ∈ ℘S} and the result follows. 2

A.6 Proof of Theorem 12

By using the same argument at the beginning of the proof of Theorem 10, it follows that x̂ ≥ 0. Fix

an arbitrary nest i. Choose any assortment Si ⊂ N within this nest. First, we consider the case where

Si ̸= ∅. Fix l = lLi , . . . , l
U
i such that δl−1 ≤ vi0 +

∑
j∈Si

vij ≤ δl. Since (x̂, ŷ) is the optimal solution to

problem (4) after replacing the collection of assortments {Ait : t ∈ Ti} in the second set of constraints

with the assortments {Ŝiℓ : ℓ = lLi , . . . , l
U
i } ∪ {∅}, this solution satisfies the second set of constraints in

problem (4) for nest i and the assortment Ŝil. Therefore, we have

ŷi ≥ Vi(Ŝil)
γi(Ri(Ŝil)− x̂) = Vi(Ŝil)

γi−1
( ∑

j∈Ŝil

rij vij

)
− Vi(Ŝil)

γi x̂.

Multiplying both sides of this inequality by δγ̄+1, we obtain

δγ̄+1 ŷi ≥ δγ̄ Vi(Ŝil)
γi−1

(
δ
∑
j∈Ŝil

rij vij

)
− δγ̄+1 Vi(Ŝil)

γi x̂. (34)

We proceed to bound each one of the terms δ
∑

j∈Ŝil
rij vij , Vi(Ŝil)

γi−1 and Vi(Ŝil)
γi in the inequality

above. By the definition of Ŝil, we have

δ
∑
j∈Ŝil

rij vij ≥ Ĝil = max
S′
i⊂N

{ ∑
j∈S′

i

rij vij : δ
l−1 ≤ vi0 +

∑
j∈S′

i

vij ≤ δl

}
≥

∑
j∈Si

rij vij , (35)

where the second inequality follows by noting that l is chosen such that δl−1 ≤ vi0+
∑

j∈Si
vij ≤ δl. The

definition of Ŝil also implies that δl−1 ≤ vi0 +
∑

j∈Ŝil
vij = Vi(Ŝil) ≤ δl. In this case, if we have γi ≤ 1,

then Vi(Ŝil)
γi−1 ≥ (δl)γi−1. If, on the other hand, we have γi > 1, then Vi(Ŝil)

γi−1 ≥ (δl−1)γi−1 =

(δl)γi−1 δ−(γi−1). So, combining the two cases, we bound Vi(Ŝil)
γi−1 by

Vi(Ŝil)
γi−1 ≥ (δl)γi−1 δ−[γi−1]+ ,

where we use [a]+ = max{a, 0}. Noting also that Vi(Ŝil)
γi ≤ (δl)γi , using these bounds on Vi(Ŝil)

γi−1

and Vi(Ŝil)
γi together with the inequality in (35) in (34), we obtain

δγ̄+1 ŷi ≥ δγ̄ (δl)γi−1 δ−[γi−1]+
( ∑

j∈Si

rij vij

)
− δγ̄+1 (δl)γi x̂

= δγ̄ (δl)γi−1 δ−[γi−1]+
( ∑

j∈Si

rij vij

)
− δγ̄+γi+1 (δl−1)γi x̂. (36)
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Our choice of l at the beginning of the proof implies that δl−1 ≤ vi0 +
∑

j∈Si
vij = Vi(Si) ≤ δl. In this

case, if we have γi ≤ 1, then Vi(Si)
γi−1 ≤ (δl−1)γi−1 = (δl)γi−1 δ1−γi . If, on the other hand, we have

γi > 1, then Vi(Si)
γi−1 ≤ (δl)γi−1. Combining the two cases yields Vi(Si)

γi−1 ≤ (δl)γi−1 δ[1−γi]
+
so that

we can bound (δl)γi−1 by

(δl)γi−1 ≥ δ−[1−γi]
+
Vi(Si)

γi−1.

Furthermore, noting that (δl−1)γi ≤ Vi(Si)
γi , we use these bounds on (δl)γi−1 and (δl−1)γi in the two

terms on the right side of (36) to obtain

δγ̄+1 ŷi ≥ δγ̄ δ−[γi−1]+ δ−[1−γi]
+
Vi(Si)

γi−1
( ∑

j∈Si

rij vij

)
− δγ̄+γi+1 Vi(Si)

γi x̂.

If we have γi ≤ 1, then γ̄ − [γi − 1]+ − [1− γi]
+ = γ̄ − 1 + γi ≥ 0, where we use the fact that γ̄ > 1. On

the other hand, if we have γi > 1, then γ̄− [γi−1]+− [1−γi]
+ = γ̄−γi+1 ≥ 0 since γ̄ ≥ γi. Therefore,

δγ̄ δ−[γi−1]+ δ−[1−γi]
+ ≥ 1. We also have δγ̄+γi+1 ≤ δ2γ̄+1. Thus, the last inequality above yields

δγ̄+1 ŷi ≥ Vi(Si)
γi−1

( ∑
j∈Si

rij vij

)
− δ2γ̄+1 Vi(Si)

γi x̂.

Since
∑

j∈Si
rijvij/Vi(Si) = Ri(Si), the inequality above shows that the solution (δ2γ̄+1 x̂, δγ̄+1ŷ) satisfies

the second set of constraints in problem (3) for the assortment Si and nest i, as long as Si ̸= ∅.

Second, we consider the case where Si = ∅. The solution (x̂, ŷ) satisfies the second set of constraints

in problem (4) for the empty assortment within nest i, in which case, we obtain ŷi ≥ Vi(∅)γi (Ri(∅)−x̂). If

we multiply this inequality by δγ̄+1 and note that Ri(∅) = 0, then we have δγ̄+1 ŷi ≥ δγ̄+1 Vi(∅)γi Ri(∅)−
δγ̄+1 Vi(∅)γi x̂ = Vi(∅)γi Ri(∅) − δγ̄+1 Vi(∅)γi x̂. Replacing the term δγ̄+1 on the right side of the last

inequality with an even larger term δ2γ̄+1, it follows that

δγ̄+1 ŷi ≥ Vi(∅)γi Ri(∅)− δ2γ̄+1Vi(∅)γi x̂.

Therefore, the solution (δ2γ̄+1 x̂, δγ̄+1ŷ) satisfies the second set of constraints in problem (3) for

assortment Si = ∅ and nest i. Combining the two cases above and noting that our choice of nest i

and assortment Si is arbitrary, we conclude that the solution (δ2γ̄+1 x̂, δγ̄+1ŷ) satisfies the second set of

constraints in problem (3).

Since the solution (x̂, ŷ) is optimal to problem (4), we have v0 x̂ ≥
∑

i∈M ŷi. This implies that

v0 δ
2γ̄+1 x̂ ≥ v0 δ

γ̄+1 x̂ ≥
∑

i∈M δγ̄+1 ŷi, in which case, the solution (δ2γ̄+1 x̂, δγ̄+1ŷ) satisfies the first

constraint in problem (3) as well and we obtain the desired result. 2
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