
Revenue Management under a Nonparametric Ranking Based
Choice Model

Alice Paul
School of Operations Research and Information Engineering,

Cornell University, Ithaca, New York 14853, USA
ajp336@cornell.edu

James Mario Davis
School of Operations Research and Information Engineering,

Cornell University, Ithaca, New York 14853, USA
jmd388@orie.cornell.edu

Jacob Feldman
Olin Business School,

Washington University, St. Louis 63108, USA
jbfeldman@wustl.edu

September 28, 2015

Abstract

We consider revenue management problems when customers choose among the offered products
according to a nonparametric ranking-based choice model. Under this nonparametric choice
model, each customer class is distinguished by a unique ranking of the available products and
an arrival probability. Given the arrival of a customer from a particular customer class, this
customer will purchase the highest ranking offered product in her respective ranking list. To
simplify the revenue management problems that we consider, we restrict the set of customer
classes that can exist. Specifically, given a tree where the nodes are the products, we assume
that the set of customer classes is derived from paths in the tree, where the order of nodes
visited along each potential path gives the corresponding ranking list of a potential customer
type. First, we study assortment problems, where the goal is to find a set of products to offer
so as to maximize the expected revenue from each customer. We give a dynamic program to
obtain the optimal solution. Second, we show how this dynamic programming formulation can
be extended to consider the assortment problem when there is a constraint limiting the space
consumption of the offered products. Third, we study network revenue management problems,
where the goal is to adjust the set of offered products over a selling horizon when the sale of each
product consumes a combination of a limited set of resources. A standard linear programming
approximation of this problem includes one decision variable for each subset of products. We
show that this linear program can be reduced to an equivalent one of substantially smaller size.
We give an algorithm to recover the optimal solution to the original linear program from the
reduced linear program.

1 Introduction

Overview and Motivation

A recent trend in the revenue management literature is incorporating customer choice into

classic revenue management problems. Traditionally, the demand for a product is assumed to be

independent of the availability of the other products. This assumption fails to accurately capture

customer substitution behavior, the phenomena where a customer chooses an alternative product

when their “ideal” product is not available. Customers’ willingness to substitute creates a depen-

dence between product demand and product availability. Customer choice models provide a way

to model this interaction; a customer choice model maps any assortment of available products to

the probabilities the products in the assortment are purchased. The parameters of the customer

choice model are estimated from transaction data and the resulting, estimated parameters are used

as the input in revenue management problems. A variety of customer choice models exist, each

nuanced to capture different aspects of customer purchasing behavior. The ideal choice model is

one which is simple to describe, easy to estimate, and whose corresponding revenue management

problems admit tractable solutions.

In this paper we consider revenue management problems when customers choose among the

offered products according to the nonparametric tree model, which we believe to possess all three

of the aforementioned ideal traits. This choice model is a special case of the full nonparametric

ranking based choice model first described in [?] and [?]. In the full nonparametric ranking based

choice model, each customer class is distinguished by an arrival probability and a unique ranking

on a subset of products. For the remainder of this paper, we use the term preference list to refer

to the unique ranking of the products associated with a customer class. When presented with

an assortment of products a customer will purchase the highest ranking offered product in her

preference list; if there is no offered product in her preference list she leaves without making a

purchase. Unfortunately, the full nonparametric ranking based choice model leads to intractable

revenue management problems. For example, under this model there is no efficient algorithm to

determine the assortment that maximizes a retailer’s expected revenue, a fundamental problem.

The nonparametric tree model is a specific case of the full nonparametric model; the set of

possible preference lists are paths in an underlying tree. To be more precise, given an undirected

tree where each node corresponds to a unique product, the set of all potential customer types is

characterized by the set of all possible paths in the tree. We restrict these paths to be linear in the

sense that they must either move progressively towards or away from the root node. We formalize

this model in Section 2.

The primary distinction of this model is that there are at most O(n2) customer classes, where n

is the number of products under consideration; this greatly simplifies the application of the model

in practice. In particular, because of the small number of customer classes, estimation procedures,

like those described in [?] and [?], are highly efficient. By contrast, in the full nonparametric model

2

these procedures can become computationally intensive since the number of customer types grows

exponentially in the number of products

In order to build revenue management systems, though, it is essential to solve the optimization

problems that arise in a tractable fashion. We embed the tree model in common revenue manage-

ment problems and provide polynomial-time algorithms. The combination of efficient estimation

procedures for the model and tractable algorithms for optimization problems allows the tree model

to form the basis of revenue management systems.

The tree model we consider is motivated by the tree model presented in [?]. They consider

two customer choice models based on tress, the intree model and outree model, both of which

are special cases of the model we consider. These models are similar to ours in that customer

classes correspond to paths in an underlying tree. However, both the intree and outree models put

significant restrictions on which paths are associated with permissible customer classes.

In the intree model all customer classes must be associated with paths that begin at an interior

or leaf node of the tree and terminate at the root. The intree model is appropriate when customers

substitute from specific, specialized products, to more general products. General products that are

designed to appeal to a wide range of customers would be located towards the root of the tree, with

the root being the most general. Products targeted to specific customer segments would be located

towards the leaves of of the tree, with the leaves being the most targeted products. The intree model

has two critical limitations, though. First, all paths associated with customer preference lists have

the same directionality, implying that all customers substitute in the same fashion. Second, all

preference lists include the root product implying, in our example, that all customers are willing to

substitute to the most general product type. This eliminates any differentiation in pickiness within

the customer populations.

In the outree model all customer classes are associated with paths that begin at the root

node and terminate at an interior or leaf node. The outree model is appropriate when customers

substitute from products with many features to products with less robust feature sets. This is the

case, for example, in a product line that is targeted to a wide range of consumer budgets, with

more expensive products having richer feature sets. Expensive products with many features would

be located towards the root of of the tree, with the most feature rich product at the root node.

Less expensive products with less rich feature sets are located toward the leaves of the tree, with

the least feature rich located at the leaves. The outree model has similar limitations to the intree

model. All paths associated with customer preference lists have the same directionality, implying

that all customers substitute in the same fashion. Additionally, all preference lists include the root

product as the first choice implying, in our example, that all customers prefer the most expensive

feature rich product to all others. This eliminates the notion of budget conscious customers.

The tree model we consider generalizes the intree and outree models and, in doing so, eliminates

the shortcomings of both. Specifically, by allowing preference lists to be associated with arbitrary

3

linear paths we make no implicit assumptions about the substitution behavior of the customer

population beyond the underlying tree structure.

Additionally, our more general tree model allows us to capture the closely related Markov chain

choice model. This model was introduced in [?] and, in its general form, was shown to closely

approximate the nonparametric model. The Markov chain model consists of an initial probability

vector and a transition matrix. Given an assortment of offered products a customer is modeled as

sampling from the initial probability vector to select an initial, most preferred product. If the initial

product is offered they purchase it and, otherwise, if that product is not offered, they transition

according the the transition matrix in a Markovian way until they either transition to an offered

product or transition out of the system. We introduce this model formally in Section ??.

When the transition matrix of the Markov chain choice model has a tree-like topology we can

reduce it to our nonparametric tree model. The reduction critically depends on our more general

tree model; a reduction is not possible to either the intree or outree models presented in [?]. This

reduction provides a further link between the nonparametric and Markov chain choice models. It

also allows us to provide, to our knowledge, the first polynomial-time algorithms for constrained

assortment optimization problems under a variant of the Markov chain choice model.

Contributions:

We consider fundamental revenue management problems under the nonparametric tree model.

These problems fall into two main categories: assortment optimization problems and the network

revenue management problem. In both cases, we develop algorithms that solve the respective

problems. Below we summarize our results.

First, we consider assortment optimization problems. In the assortment optimization problem

the retailer is presented with a collection of products to select from and must choose an assortment

of products to offer to customers so as to maximize expected revenue. In this case we show that

the assortment problem can be solved with a dynamic program. This dynamic program has a small

state space and, consequently, leads to efficient algorithms. The key insight that we make in the

dynamic program is that the purchase probability of any item within an arbitrary assortment can

be computed recursively with only knowledge of each product’s closest offered predecessor in the

tree. Because our nonparametric tree model is a generalization of the intree and outree models in

[?], this dynamic program provides a generalization of their methods.

The dynamic program for the pure assortment problem can be extended to settings where the

retailer has additional cost considerations. We consider scenarios where there are fixed costs to

include products in the offered assortment and penalties when a customer is forced to substitute

to a less preferred product. Substitution penalties model a loss of customer good will, a common

consideration for retailers.

Additionally, we extend the dynamic program to the cardinality constrained assortment op-

4

timization problem. In this problem the available products are grouped into categories and the

retailer can offer a limited number of products from each category. In the simplest case all prod-

ucts are a single category and the retailer is constrained to have an assortment of limited size. We

show that our dynamic program can be extended to solve the cardinality constrained problem.

The dynamic program used in the cardinality constrained assortment problem provides a frame-

work to solve the related, but more difficult, capacity constrained assortment optimization problem.

In this problem each product consumes some arbitrary capacity, which is a limited resource for the

retailers. Capacity can represent shelf space, space on delivery trucks, or production capacity.

Again, the retailers objective is to offer an assortment that maximizes expected revenue subject

to a limit on the total capacity consumption of the offered products. We show that this problem

is NP-hard and, consequently, there is no tractable algorithm unless P=NP. However, we develop

a fully polynomial time approximation scheme (FPTAS). The FPTAS allows a trade off between

running time and solution quality: it can expend additional computational time to produce assort-

ments guaranteed to provide revenue progressively closer to optimal. With enough computational

power these algorithms can get arbitrarily close to an optimal solution.

The second problem we consider is known as the network revenue management problem. To our

knowledge we are the first to consider the network revenue management problem under a variant

of the nonparametric choice model. In this problem setting there are a number of resources and a

collection of products, each of which consumes some combination of resources. There is a selling

horizon discretized into time periods. In each time period the retailer must asses the available

resources and decide which products to offer. Once the retailer offers an assortment of products,

a customer arrives and makes a purchasing decision. Again, we model the customer’s purchase

decision with the nonparametric tree model. The objective is to find a policy to decide which

products to offer at each time period so as to maximize the total expected revenue.

We can formulate the network revenue management problem as a dynamic program but this

leads to a large state space and is not practical. Instead, we focus on a deterministic linear

programming approximation formulated under the assumption that the customer choices take on

their expected values. In this linear program there is a decision variable for each subset of products

and, consequently, the number of decision variables increases exponentially with the number of

products; this leads to an intractable linear program for large numbers of products. Focusing on the

deterministic linear program, we show that if the customers choose according to the nonparametric

tree model, then the deterministic linear program can immediately be reduced to an equivalent

linear program whose number of decision variables and constraints increase only polynomially

with the numbers of products and resources. We develop an algorithm to recover the optimal

solution to the original deterministic linear program by using the optimal solution to the reduced

deterministic linear program. This algorithm allows us to recover the frequency with which we

should offer each subset of products to customers. The insight behind this algorithm is twofold.

First, the unconstrained assortment optimization problem can be formulated as a concise linear

5

problem whose feasible region contains that of the reduced linear program. Second, any feasible

solution to this linear program induces a distribution over the assortments that is identical to the

optimal frequencies with which to offer each subset of products. This algorithm is efficient and

easily implemented in practice.

Related Literature:

There are a handful of papers that have considered the assortment optimization problem under

the nonparametric choice model. The work that is most closely related to ours is [?], who consider

the assortment problem restricted to intrees and outrees. Both of these models have restrictions

on which preference lists can be associated with customer classes. We extend the results of this

paper by lifting many of these restrictions and working in a more general setting. In [?] they

also introduce operational considerations, such as fixed costs for introducing products or penalties

when a customer substitutes to a less preferred product. We extend these results by considering

more general cost functions and introducing the cardinality and capacity constrained versions of

the assortment problem. Our dynamic programming approach closely resembles the approach

proposed in [?] for the unconstrained assortment problem under the Markov chain choice model.

Both techniques consider how a particular offer decision can “block” demand that would otherwise

find the set of products that are already offered.

Two other papers that are closely related to our work are [?] and [?]. The former proves various

hardness results related to the assortment problem under the nonparametric choice model. The

latter considers the assortment optimization problem under the nonparametric choice model when

customer preference lists are associated with structured set systems defined over a single overarching

ordering of the products; one such structured set system is a laminar family, for example. The

general algorithm provided in this paper can be used to solve the outree case described in [?], but

it does not generalize the more complex intree case. The authors of [?] study a consider-then-

choose nonparametric choice model. In this model, each customer class is distinguished by a price

threshold and a preference list. Once prices have been set, customers purchase the highest ranking

offered product that is priced below their price threshold. The authors of this paper study the joint

assortment and pricing problem under this two stage buying model.

There is literature on assortment optimization problems under various choice models. [?], [?],

[?] and [?] study various versions of the constrained assortment problems when customers choose

according to the multinomial logit model. [?], [?] and [?] focus on assortment problems when

customer choices are governed by a mixture of multinomial logit models. [?], [?], and [?] develop

efficient solution methods for the unconstrained assortment problem when customers choose under

the nested logit model. The authors of [?] and [?] study the space and cardinality constrained

versions of the assortment problem when customers choose according to the nested logit model. [?]

and [?] study related pricing problems under the nested logit model.

It is common to formulate deterministic linear programming approximations for network rev-

6

enue management problems under the assumption that customer choices take on their expected

values. Such approximations appear in [?], [?], [?], [?], [?], [?] and [?]. The authors of [?], [?]

and [?] provide tractable methods to approximate the dynamic programming formulations of net-

work revenue management problems. Our work on the network revenue management problem most

closely resembles that of [?] who also show that the deterministic linear program can be condensed

to a reduced linear program when customers choose according to the Markov chain choice model.

In this paper, recovering the optimal solution to the original deterministic linear program from the

optimal solution to the reduced linear program requires a tedious projection algorithm. In contrast,

our approach for recovering the optimal solution to the deterministic linear program is a simple

sampling algorithm.

The remainder of this paper is organized as follows. In Section 2, we describe the nonparametric

tree choice model and introduce the assortment optimization problems that we study. In Section

3, we give our dynamic programming approach to solve the unconstrained assortment problem and

show how this approach can be extended to consider assortment problems with cost considerations

(Section 3.1 as well as the cardinality constrained version of the assortment problem (Section 3.2).

Additionally, in Section 5 we show how to reduce a special case of the Markov chain choice model

to the nonparametric tree model. In Section 3.2, we give an FPTAS for the space constrained

assortment problem which we show to be NP-Hard. Next, we present our results for the network

revenue management problem in Section 5. We present computational experiments in Section 6

to validate the efficiency of our dynamic programming approach for the unconstrained assortment

problem. In Section 7, we conclude and provide avenues for future work.

2 Nonparametric Tree Choice Model

We will use a nonparametric, ranking-based choice model to model customer buying decisions. A

retailer has access to a collection of n substitutable products indexed by N = {1, . . . , n}. There is a

collection of customer classes G, where each customer class g ∈ G is defined by an arrival probability

λg and a product preference list σg defined over a subset of N . The list σg represents a customer’s

product preferences and we let σg(i) be the position of product i in customer class g’s preference list;

note that σg may not include all products in N . If the retailer offers assortment S ⊆ N and the list

σg contains an element of S then customer type g will purchase product πg(S) := arg mini∈S σg(i).

If σg does not contain an element of S then customer type g does not make a purchase; in this case

we will abuse notation and let πg(S) = 0.

Given the collection of customer classes G and offer set S the probability that item i is purchased

is

Pri(S) =
∑

g∈G:πg(S)=i

λg.

For every j ∈ N we let rj > 0 denote the profit margin of product j. When set S is offered, the

7

expected revenue is

R(S) =
∑
i∈S

Pri(S)ri.

Our objective is to find a set S∗ ⊆ N that maximizes expected revenue

R∗ = max
S

R(S). (1)

The authors in [?] show that problem (1) is NP-Hard to approximate within a factor of O(n1−ε)

for any ε > 0. Further, the hardness result of [?] holds even when the preference lists for each

customer type are constructed from a single over-arching ordering, i.e. there exists an ordering

≺ on the products where σg(i) < σg(j) implies i ≺ j for all g ∈ G. As a result, a natural next

step is to simplify the space of potential customer types in order to render the assortment problem

tractable while not making too large a sacrifice in terms of modeling flexibility with regards to the

underlying choice process.

We will be interested in customer classes based on a rooted undirected tree structure T = (N,E)

with root r̄ and all nodes, including r̄ are the products in N . Any customer class g ∈ G will have

a product preference list σg associated with a path in T . The ordering of the products in σg will

correspond to the order products are visited in a path through T . We restrict our attention to

linear paths, paths that visit at most one child of every node. See Figure 1. We can think of these

paths as either moving towards or away from r̄. When no confusion arises we identify σg with the

path in the tree and refer the to preference list moving towards or away from r̄. In what follows,

we will assume the tree T is a binary tree. This assumption is without loss of generality: we can

meet this requirement by adding at most n nodes that represent null products that provide no cost

or benefit to the retailer.

In addition to this unconstrained problem, we will also be interested in adding constraints. For

example, the retailer may be constrained by limited shelf space and can only offer at most k items.

In this case the retailer can only offer an assortment S ∈ F = {S ∈ N : |S| ≤ k}. We refer to F as

the collection of feasible assortments. The retailer is then faced with the problem

max
S∈F

R(S). (2)

In what follows, we will be interested in different constraints, each of which leads to a different

collection of feasible sets F . These additional constraints can complicate the assortment problem

considerably.

3 Main Algorithm

In this section, we provide a dynamic program for the assortment problem given in (1). The tree T

will define the steps of computation in our dynamic program. Before stating the dynamic program

we first introduce additional notation and develop specific insights into solving (1) in a tree T .

8

7

4

2

1

3

6

5

P4

T4

C4

Figure 1: An example of a set of customer classes represented as a rooted binary tree. Possible
customer preference lists are all linear paths including (7, 4, 2, 1), (3, 4), and (5). The path (1, 2, 4, 3)
is not linear and would not correspond to a possible customer class.

Given a vertex i, we let Ci be the children of i in T . Further, we say that i is the parent of

all j ∈ Ci and define Pj = i. Note that for leaves of T , Ci = ∅. We will be interested in complete

subtrees of T . We let Ti be the subtree rooted at i containing all successors of i. When there is

no confusion we will also use Ti to refer to the products represented by the nodes of the complete

subtree. Without loss of generality, we can index the nodes such that the root node has index n

and if Ti ⊂ Tj then j > i.

The tree T will be used to define blocking relationships among products. For a customer class

g we say i blocks product j when S is is offered if πg(S) = i and πg(S/i) = j. More generally,

we say i blocks j when S is offered whenever there exists at least one class g where this blocking

relationship holds. Intuitively, i blocks j when the removal of i from the offer set induces a customer

class to purchase product j. Since T defines the ordered lists for customer classes these blocking

relationships are tied to T . We define, for any pair of nodes, the degree to which they block each

other. Specifically, we let

Bi,j =
∑

g∈G:πg({i,j})=i,πg({j})=j

λg.

Note that Bi,j is not identical to Bj,i since these two terms involve customer classes moving in

opposing directions, which may have different associated probabilities. In addition to describing

blocking in terms of probability we will also describe blocking in terms of revenue. We let rjBi,j

be the revenue i blocks from j when {i, j} is offered.

Given a subset S and i ∈ S, we define φi(S) to be i’s closest predecessor in S and δi(S) = {j ∈
S|φj(S) = i} to be the set of closest successors to i in S. If no predecessor of i is offered in S , let

φi(S) = 0; if no successors are offered we let δi(S) = ∅. Further, we use Φ(i) to represent all of i’s

predecessors in T including product 0.

9

If we offer subset S and i ∈ S, any customer class g traveling away from the root that has i

in its ranked subset does not end up purchasing i if and only if it purchases a successor j of i.

Since all customer classes are linear, this customer class must also contain φi(S) in σg before i.

Therefore, we know σg contains both φi(S) and i but prefers φi(S) to i. Similarly, a customer class

traveling up the tree towards the root that has i in its ranked subset does not purchase i if and

only if it purchases a successor of i. Since all customer classes are linear, σg must contain both a

node j ∈ δi(S) and i but prefers j to i. These considerations allow us to rewrite the probability i

is purchased when S is offered using our blocking notation:

Pri(S) =

{
Pri(i)−Bφi(S),i −

∑
j∈δi(S)Bj,i i ∈ S

0 i /∈ S
. (3)

This alternative expression is critical in our dynamic program formulation. Note that this proba-

bility does not change if i’s closest offered predecessor and closest offered successors in S remain

the same. In essence, purchase decisions related to i are local decisions.

Our dynamic program is based on maximizing adjusted revenues in complete subtrees of T .

Intuitively, given Ti and a fixed set S̄i ⊆ N/Ti the adjusted revenue of an offer set Si ⊆ Ti is the

revenue received from products in Si minus the revenue Si blocks from products in S̄i. However, as

described above, to calculate the purchase probabilities for each node j ∈ Si we only need to know

the closest offered predecessor p of the root i of S̄i. Similarly, we only need to know p to know

which customer classes are blocked by Si from considering nodes in S̄i.

More precisely, given a subset Si ⊆ Ti and a predecessor p of i, we define the adjusted revenue

of Si to be

A(Si, p) =
∑
j∈Si

rjPrj(Si ∪ {p})− rp
∑

k∈δp(Si∪{p})

Bk,p.

Note that this expression also holds when p = 0. The first term is the revenue received from products

in Si when p is the closest predecessor offered to i. This follows from the fact that calculating the

purchase probability of an item only requires knowing the closest offered predecessor and closest

offered successors (all of which are in Si). The second term accounts for the revenue Si blocks from

p (and therefore from S̄i). With this new notation we can rewrite (1) as

R∗ = max
S⊆N

A(S, 0).

The terminal state of our dynamic program will compute precisely this maximum.

We can now present our dynamic program. Each stage is a product i under consideration for

inclusion in S and the one dimensional state space is a product p, possibly equal to 0, that is

a predecessor of i in T . Our value function Vi(p) is the maximum adjusted revenue that can be

achieved from subsets of Ti when p is the closest offered predecessor of i.

Vi(p) = max{riPri(i)− riBp,i − rpBi,p +
∑
k∈Ci

Vk(i),
∑
k∈Ci

Vk(p)}. (4)

10

For leaves of T , our base case, this simplifies to Vi(p) = max{riPri(i)− rpBi,p − riBp,i, 0}.

Theorem 3.1.

Vi(p) = max
Si⊆Ti

{A(Si, p)}.

Proof. First, consider the base case. For the leaves of T , Vi(p) = max{riPri(i)− rpBi,p− riBp,i, 0}.
This first term is equivalent to A({i}, p) and the second term to A(∅, p) so the claim holds.

Now consider a node i that is not a leaf and suppose that the claim holds for all successors of i.

Let l and r be the left and right children of i, respectively. Let S∗i ⊆ Ti be a subset that maximizes

A(Si, p).

In the first case, i ∈ S∗i . Then, δp(S
∗
i ∪ {p}) = {i} since it is the only node in S∗i for which p is

the closest offered predecessor, i.e. φi(S
∗
i ∪ {p}) = p. We have

A(S∗i , p) =
∑
j∈S∗i

rjPrj(S
∗
i ∪ {p})− rp

∑
k∈δp(S∗i ∪{p})

Bk,p

=
∑
j∈S∗i

rj

Prj(j)−Bφj(S∗i ∪{p}),j −
∑

k∈δj(S∗i ∪{p})

Bk,j

− rpBi,p
= riPri(i)− riBp,i − rpBi,p +

∑
j∈S∗i −{i}

rjPrj(S
∗
i ∪ {p})− ri

∑
k∈δi(S∗i ∪{p})

Bk,i

= riPri(i)− riBp,i − rpBi,p +
∑

j∈S∗i −{i}

rjPrj(S
∗
i)− ri

∑
k∈δi(S∗i)

Bk,i

where the second line follows from (3) and the last line comes from the fact that for each j ∈ S∗i −{i},
the closest predecessor of j is not p (since i is offered) and Prj(S

∗
i ∪ {p}) = Prj(S

∗
i).

We can simplify this expression further. The set S∗i can be decomposed into {i} and two

additional sets: S∗l = S∗i ∩ Tl and S∗r = S∗i ∩ Tr. Let j ∈ S∗i − {i}. Without loss of generality, let

j ∈ Tl. Then, φj(S
∗
i) = φj(S

∗
l ∪ {i}) since its closest predecessor must be i or in the same subtree

as j. This also shows δj(S
∗
i) = δj(S

∗
l ∪ {i}) and

Prj(S
∗
i) = Prj(S

∗
l ∪ {i}).

Lastly, we can easily see that

δi(S
∗
i) = δi(S

∗
l ∪ {i}) ∪ δi(S∗r ∪ {i}).

11

Continuing from the above expression, these observations allow us to write

A(S∗i , p) = riPri(i)− riBp,i − rpBi,p
+
∑
j∈S∗l

rjPrj(S
∗
l ∪ {i})− ri

∑
k∈δi(S∗l ∪{i})

Bk,i

+
∑
j∈S∗r

rjPrj(S
∗
l ∪ {i})− ri

∑
k∈δi(S∗r∪{i})

Bk,i

= riPri(i)− riBp,i − rpBi,p +A(S∗l , i) +A(S∗r , i).

Noting that S∗i is the maximizer of the above expression and that A(S∗l , i) and A(S∗l , i) are com-

pletely independent since they do not share any successors in the tree, we see that we can express

our optimization problem recursively:

max
Si⊆Ti:i∈Si

A(Si, p) = riPri(i)− riBp,i − rpBi,p + max
Sl⊆Tl

A(Sl, i) + max
Sr⊆Tr

A(Sr, i)

= riPri(i)− riBp,i − rpBi,p + Vl(i) + Vr(i)

where we have used the inductive hypothesis.

By very similar analysis, when i /∈ S∗i we get

max
Si⊆Ti:i/∈Si

A(Si, p) = max
Sl⊆Tl

A(Sl, p) + max
Sr⊆Tr

A(Sr, p)

= Vl(p) + Vr(p).

By combining these expressions we reach the desired claim

max
Si⊆Ti

A(Si, p) = max{ max
Si⊆Ti:i/∈Si

A(Si, p), max
Si⊆Ti:i∈Si

A(Si, p)}

= max{riPri(i)− riBp,i − rpBi,p +
∑
k∈Ci

Vk(i),
∑
k∈Ci

Vk(p)}.

The special case of Theorem 3.1 when i = r̄ and p = 0 shows that our dynamic program

computes the optimal solution to (1), R∗. We recover the optimal subset corresponding to this

revenue using Algorithm 2 in the Appendix.

We can now analyze the computational complexity of computing the necessary Vi(j). Let d be

the depth of T . We pre-compute each Pri and Bi,j . The number of customer classes is |G| ≤ nd.

Each g ∈ G contributes to at most d2 Bi,j values since |σg| ≤ d and we are interested in pairs of

nodes in σg. Each customer class also contributes to at most d Pri values. Therefore, calculating

the Pri and Bi,j values has running time O(nd3). After this pre-computation, each of the O(nd)

values Vi(j) can be computed in constant time. This leads to an overall running time of O(nd3).

For a full binary tree, d = log n leading to a running time of O(n log3 n).

12

We present one final corollary regarding the adjusted revenues. Specifically, the corollary below

shows that the revenue of any assortment can be computed by summing adjusted revenues. This

corollary becomes useful when we consider extending (4) in subsequent sections.

Corollary 3.2. Consider any subset S ⊆ N and node i with children l and r. Let Si = Ti ∩ S,
Sl = Tl ∩ S, and Sr = Tr ∩ S. Lastly, let p = φi(S). Then,

A(Si, p) =

{
A(i, p) +A(Sl, i) +A(Sr, i) i ∈ S,
A(Sl, p) +A(Sr, p) otherwise.

In particular, this shows that

A(S, 0) =
∑
i∈S

A(i, φi(S)) = R(S).

Proof. This follows from the recursive analysis in Proposition 3.1.

3.1 Product and Substitution Costs

The dynamic program in (4) can be easily extended to incorporate additional cost considerations.

In this section we focus on two considerations proposed in [?]: a setup cost incurred when offering

a product and a substitution penalty incurred when a customer is forced to substitute to less

desirable products. To model setup costs we introduce a constant fixed cost of ki for offering

product i, which could represent a set up or stocking cost. To model the substitution penalty we

introduce a function f(l) that represents the penalty incurred when a customer purchases their lth

most preferred product. If a customer type g purchases product i and l = σg(i) then the retailer

incurs a penalty of f(l). In [?] they assume that f(·) is linear and increasing and that f(1) = 0; we

consider arbitrary functions. Below we present an extension of (4) that includes these costs. This

provides a polynomial time algorithm for assortment optimization under these cost considerations:

this is an improvement over the exponential time algorithm of [?].

We let

Peni =
∑

g∈G:i∈σg

λgf(σg(i)).

be the sum of penalties the retailer incurs if set S = {i} is offered. When offering i prevents a

customer from substituting further down in their list, it can potentially lower the total penalty.

This inspires a notion of “blocking” similar to that we introduced in the previous section. Given

any pair of nodes, we let

Qi,j =
∑

g∈G:πg({i,j})=i,πg({j})=j

λgf(σg(j)).

be the penalty i blocks from j.

13

We can now write the modified dynamic program:

Vi(p) = max{riPri(i)− riBp,i − rpBi,p − ki − Peni +Qi,p +Qp,i +
∑
k∈Ci

Vk(i),
∑
k∈Ci

Vk(p)}. (5)

For leaves of T , our base case, this simplifies to Vi(p) = max{riPri(i)− riBp,i− rpBi,p−ki−Peni +

Qi,p + Qp,i, 0}. The value functions in (5) capture the adjusted revenue for product i and all of

its successors given that product p is the closest offered successor of i. Here, riPri(i) − riBp,i −
ki − Peni + Qp,i is the revenue received from i, modified to include costs and penalties, when p is

the closest offered predecessor and other products in Ti are not offered. The term −rpBi,p + Qi,p

adjusts both the revenue and the penalty term for p since some customers may choose i instead.

The addition of Qi,j and Peni only introduce a constant multiplier to the running time of the

dynamic program: Qi,j and Peni Pri can be precomputed simultaneously with Bi,j and Pri(i). As

a consequence the running time of this modified algorithm is O(nd3) where d is the depth of T .

3.2 Cardinality Constraints

Realistically retailers are under many constraints and are not able to offer any arbitrary set of

products to their customers. Frequently these constraints are in the form of cardinality constraints

where there is some small number of limited resources available to the retailer and each item

consumes some integer quantity of each resource. This can model shelf space constraints, limited

shipping availability, or limited production capacity. In the simplest case, a single shelf space

constraint, each item consumes a single unit of capacity and the retailer has C ≤ n units of

capacity on their shelves.

Beyond the simple shelf space constraint, the dynamic program in (4) can be extended to handle

a wide variety of cardinality constraints. We can introduce a vector of resources available to the

retailer and each product can consume any integer quantity of these resources. The vector can

represent, for example, the shelf space available in different areas of a physical store, page space

available in different parts of a website, space on different trucks that move between warehouses,

or production capacity in different facilities. There are three limiting aspects to the cardinality

constraints we can model. Firstly, the vector of resources must be a small constant relative to

the input. Secondly, the consumption of resources by products must be expressed as an integer.

Finally, the total available units of any resources must be small relative to the input; specifically

the units of available resources can be expressed as some polynomial function of the size of the

input. These limitations still afford a great flexibility in modeling power.

For simplicity, in introducing the extension of (4) to include cardinality constraints we focus on

the simplest cardinality constraint: a space constraint. The retailer has C units of space and each

product consumes 1 unit of space. It is easy to extend these methods to the more general cardinality

14

constraints. Formally, we can write the space constrained assortment problem as follows:

max
S:|S|≤C

R(S). (6)

Adding this space constraint couples decisions across different branches of the tree, complicating

the assortment problem at hand. This is the primary difficulty with introducing any cardinality

constraint.

We present a dynamic programming approach to solve the space constrained version of the

problem. We will have a three dimensional state space: a product i that is under consideration for

inclusion in S, a product p (possibly equal to 0) that is a predecessor of i in T , and the remaining

units of space for products in Ti. Our value function Vi(p, c) will be the maximum adjusted revenue

that can be achieved from subsets of Ti using at most c units of space when p is the closest offered

predecessor of i.

Vi(p, c) = max{riPri(i)− riBp,i − rpBi,p + max
cl,cr:cl+cr≤c−1

Vl(i, cl) + Vr(i, cr), (7)

max
cl,cr:cl+cr≤c

Vl(p, cl) + Vr(p, cr)}.

For leaves of T , our base case, this simplifies to

Vi(p, c) =

{
max{riPri(i)− riBp,i − rpBi,p, 0} c > 0

0 c = 0.

This inner maximization represents an optimal allocation of the remaining space to product i’s left

and right parents, which we represent as nodes l and r respectively for the remainder of this paper.

The value functions for the constrained problem resemble those of the unconstrained problem

given in (4), although we add an additional element to the state space to ensure we output a feasible

assortment. The preprocessing of the Bi,j and Pri values remains identical and takes O(nd3) time.

However, adding the additional state increases the number of necessary Vi(j) values to O(n2d) and

the computation for each value to O(n). Therefore, the overall runtime is O(max{n3d, nd3}) =

O(n3d) since d ≤ n.

4 General Capacity Constraints

In this section we solve the assortment optimization problem given in (2) when the set of feasible

assortments F is given by a knapsack constraint. Specifically, each product consumes ci units of

space and there are C units of space to allocate. In terms of (2) this leads to a set of feasible

assortments F(C) = {S ⊆ N :
∑

i∈S ci ≤ C} and an optimal revenue

R∗C = max
S⊆N :

∑
i∈S ci≤C

R(S). (8)

This constraint does not fall into the framework presented in Section 3.2 and is considerably

harder to solve. The distinction is that the space consumed by each product, ci, no longer needs to

15

take integer values, as it does in Section 3.2, and the space to allocate, C, can be arbitrarily large.

The difficulty of the space constrained assortment problem given in (8) is detailed in the following

hardness result.

Theorem 4.1. The space constrained assortment problem is NP-Hard even when each customer

class is a singleton.

Proof. The proof, which we leave to the Appendix B, uses a reduction from the knapsack problem.

Since the assortment problem given in (8) is NP-Hard we cannot hope to develop a polynomial-

time algorithm to solve the problem optimally unless P = NP . As a result we seek an approx-

imation scheme, namely an fully polynomial time approximation scheme (FPTAS). The FPTAS

that we detail below allows us to find for all ε an assortment whose revenue is within a factor of

1 + ε of the optimal revenue in a running time that grows polynomially in 1/ε. Our approximation

scheme assumes that the R∗ ≥ 1; this is a reasonable assumption since the revenues, ri, can be

given in arbitrarily accurate units, say to the nearest cent, without a substantial increase in the

number of bits required to encode the problem. Further, the problem remains NP-Hard even with

this assumption.

In order to develop our FPTAS we will focus on the space items occupy, rather than revenues.

Specifically, we will be interested in the minimum space required to achieve a particular adjusted

revenue threshold in each subtree of T . We let F(C) be the set of feasible assortments when the

retailer has capacity C and, expanding on this notation, we let Fi(C) = {Si ⊆ Ti :
∑

i∈Si ci ≤ C}.
We let

Ci(p, r) = min
C

{
max

Si∈Fi(C)
A(Si, p) ≥ a

}
.

If there is no value C that can achieve adjusted revenue r in Ti then we let Ci(p, a) = ∞. Note

that if r is greater than the highest revenue of any single item, rmax, then Ci(p, a) = ∞ since the

maximum revenue achievable by any set is bounded by rmax.

Before presenting our FPTAS we present an intractable method of computing R∗. This method

provides the basis of our FPTAS. We compute R∗ by finding the maximum a such that Cr̄(0, a) ≤ C.

This approach requires finding Cr̄(0, a) for all a ∈ [0, rmax]; we do this with the following dynamic

program. Recall that A(i, p) = riPri(i) − riBp,i − rpBi,p is the adjusted revenue we receive from

product i when p is i’s closest offered predecessor.

Vi(p, a) = min

ci + min
al,ar:al+ar≥a−A(i,p)

Vl(i, rl) + Vr(i, ar)

min
al,ar:al+ar≥a

Vl(p, al) + Vr(p, ar),
(9)

where l and r are the left and right children of i and the inner minimization is over al, ar ∈ [0, rmax].

16

Theorem 4.2.

Vi(p, a) = Ci(p, a)

Proof. Let Ci(p, a) = C∗i and let S∗i = arg maxSi∈Fi(C)A(Si, p). Without loss of generality we can

assume A(S∗i , p) = a. Let l and r be the left and right child of i, respectively.

Suppose i ∈ S∗i . From the proof of Corollary 3.2 we have

a = A(S∗i , p) = A(i, p) +A(Sl, i) +A(Sr, i)

where Sl = S∗i ∩Tl and Sr = S∗i ∩Tr. Each of Sl and Sr consume some capacity; we let
∑

j∈Sl cj = C∗l
and

∑
j∈Sr cj = C∗r . Note that C∗i = ci + C∗l + C∗r . Each set also achieves some adjusted revenue;

we let A(Sl, i) = a∗l and A(Sr, i) = a∗r . Since S∗i ⊆ Ti achieves adjusted revenue a with minimum

capacity we get Cl(i, a
∗
l) = C∗l and Cr(i, a

∗
r) = C∗r . Further, to minimize capacity and achieve

adjusted revenue a in Ti when we must allocate a∗l adjusted revenue to Tl and a∗r adjusted revenue

to Tr. From these insights we get

Ci(p, a) = ci + C∗l + C∗r

= ci + Cl(i, a
∗
l) + Cr(i, a

∗
r)

= ci + min
al,ar:al+ar=a−A(i,p)

{Cl(i, al) + Cr(i, ar)}

We can now use the inductive hypothesis to show that when i ∈ S∗i we have

Ci(p, r) = ci + min
al,ar:al+ar=a−A(i,p)

{Vl(i, al) + Vr(i, ar)} .

Through similar reasoning, when i /∈ S∗i we get

Ci(p, r) = min
al,ar:al+ar=a

{Vl(p, al) + Vr(p, ar)} .

Combining these gives us

Ci(p, a) = min

{
ci + minal,ar:al+ar=a−A(i,p) {Vl(i, al) + Vr(i, ar)} ,
minal,ar:al+ar=a {Vl(p, al) + Vr(p, ar)}

= Vi(p, a)

which leads to our desired conclusion.

The dynamic program in (9) is intractable since the state variable a is continuous. We ap-

proximate this DP by placing a grid on this continuous state variable and only computing Vi(p, a)

for values of a that lie on the grid. This strategy ultimately leads to a fully polynomial time

approximation scheme.

17

Recall that the state a only take on values in [0, rmax]. We will grid this state variable using a

linear grid scheme with step size ε on the interval [0, 1] and an exponential scheme on the interval

[1, rmax]:

Grid = {(lε), l = 0, . . . , L1} ∪ {(1 + ε)l, l = 0, . . . , L2},

where L1 = b1/εc, L2 = dlog(rmax)/ log(1 + ε)e = O(log(rmax)/ε). The linear, ε-spaced grid on

the interval [0, 1] is critical. It generates a polynomial (in 1/ε) number of grid points and, since

R∗C ≥ 1, rounding up in this interval can cost us at most εR∗C . Consider the following dynamic

program, designed to approximate (9): for product i, predecessor p of i, and a ∈ Grid, we define

V̄i(p, a) = min

ci + min
al,ar:al+ar≥a−A(i,p)

[
V̄ ∗l (i, al) + V̄r(i, ar)

]
min

al,ar:al+ar≥a

[
V̄l(p, al) + V̄r(p, ar)

]
,

(10)

where the inner minimization is over al, ar ∈ Grid, and the base cases

V̄i(p, a) =


ci A(i, p) ≥ a and a > 0

0 a = 0

∞ otherwise

(11)

when i has is a leaf node.

These value functions are similar to those in (9); the only distinction is that the state variable

a and the variables in the inner maximization, al and ar, are now restricted to take values in Grid.

To compute an approximation to R∗C we follow the same outline. First we compute V̄r̄(0, a) for all

a ∈ G, where r̄ is the root of the tree. Then we output R̄C = maxa{V̄r̄(0, a) : V̄r̄(0, a) ≤ C} as our

approximation to the optimal revenue, R∗C .

Let S∗ be an optimal assortment for problem (8) and let S∗i = S∗ ∩ Ti ∀ i ∈ N . The following

proposition relates the adjusted revenue of S∗i to R∗cap.

Proposition 4.3. A(S∗i , φi(S
∗)) ≤ R∗C ∀ i ∈ N

Proof. We observe that A(S∗i , φi(S
∗
i)) ≤

∑
j∈S∗i

rjPrj(S
∗) ≤ R∗C . The first inequality holds since

the right hand side does not subtract the revenue blocked by φi(S
∗), a non-negative quantity,

and the second inequality holds because the middle term is the expected revenue from a feasible

assortment.

Theorem 4.4. Suppose S∗ achieves the optimal revenue in (8). Let S∗i = S∗ ∩ Ti and φi(S∗) = p.

Then, for any ε > 0 grid, we have

V̄i(p, dA(S∗i , p)− ε|Ti|R∗Ce) ≤ Ci(p,A(S∗i , p)),

where dxe represents rounding x up to the nearest grid point.

18

Proof. R∗C using capacity Cr̄(0, R
∗
C)

We first prove the result for leaf node i. If i ∈ S∗ then we have A(S∗i , p) = A(i, p). In this case,

Ci(p,A(i, p)) = ci. On the other hand, we know that V̄i(p, dA(i, p)−εR∗Ce) ≤ V̄i(p, dA(i, p)(1−ε)e) ≤
V̄i(p, bA(i, p)c) ≤ ci, where the first inequality follows by Proposition 4.3. Similarly, if i /∈ S∗, then

A(S∗i , p) = 0 and V ∗i (j, 0) = V̄i(j, d0− εe) = 0, which holds trivially. Thus, the result holds for the

leaf nodes.

For the remainder of the proof fix i as an interior node of the tree and let l and r be the left and

right children of i, respectively. For induction, assume the result holds for l and r. We consider

two cases.

Case 1: i is not in S∗. Then, Ci(p,A(S∗i , p)) = Cl(p,A(S∗l , p)) + Cr(p,A(S∗r , p))

Let al = dA(S∗l , p)− ε|Tl|R∗Ce and ar = dA(S∗r , p)− ε|Tr|R∗Ce. Define V̂ = V̄l(p, al) + V̄r(p, ar). Our

induction hypothesis immediately gives us that V̂ ≤ Ci(p,A(S∗i , p)). We complete the proof for

this case by showing that V̄i(p, dA(S∗i , p) − ε|Ti|R∗Ce) ≤ V̂ . To do so, we show that when solving

(10) for V̄i(p, dA(S∗i , p) − ε|Ti|R∗Ce) the inner minimization considers the pair al, ar. If al, ar is

considered then we immediately get V̄i(p, dA(S∗i , p)−ε|Ti|R∗Ce) ≤ V̂ , as desired. To show that al, ar

is considered we must show that they sum to at least dA(S∗i , p)− ε|Ti|R∗Ce. Consider the following

inequalities.

dA(S∗i , p)− ε|Ti|R∗Ce ≤ A(S∗i , p) + εR∗C − ε|Ti|R∗C
= A(S∗l , p)− ε|Tl|R∗C +A(S∗r , p)− ε|Tr|R∗C
≤ dA(S∗l , p)− ε|Tl|R∗Ce+ dA(S∗r , p)− ε|Tr|R∗Ce.

The first inequality follows from Proposition 4.3: rounding up to a grid point adds at most εR∗C .

The first equality follows because |Ti|−1 = |Tr|+ |Tl| and that A(S∗i , p) = A(S∗l , p)+A(S∗r , p). The

last inequality follows from the definition of rounding. This completes the proof of the first case.

Case 2: i ∈ S∗. Then, Ci(p,A(S∗i , p)) = ci + Cl(i, A(S∗l , i)) + Cr(i, A(S∗r , i))

This case follows from similar reasoning. As before let al = dA(S∗l , i)−ε|Tl|R∗Ce and ar = dA(S∗r , i)−
ε|Tr|R∗Ce. Define V̂ = ci + V̄l(i, dA(S∗l , i) − ε|Tl|R∗Ce) + V̄r(i, dA(S∗r , i) − ε|Tr|R∗Ce). We have V̂ ≤
Ci(p,A(S∗i , p)) since φl(S

∗) = φr(S
∗) = i. We complete the proof for this case by again showing

that al +ar ≥ dA(S∗i , p)− ε|Ti|R∗Ce−A(i, p) and, as a consequence, the pair al and ar is considered

in the inner minimization in (10).

dA(S∗i , p)− ε|Ti|R∗Ce −A(i, p) ≤ A(S∗i , p)) + εR∗C − ε|Ti|R∗C −A(i, φi(S
∗))

= A(S∗l , i)− ε|Tl|R∗C +A(S∗r , i)− ε|Tr|R∗C
≤ dA(S∗l , i)− ε|Tl|R∗Ce+ dA(S∗r , i)− ε|Tr|R∗Ce.

The first inequality follows from Proposition 4.3: rounding up to a grid point adds at most εR∗C .

The first equality follows because |Ti| − 1 = |Tr| + |Tl| and that A(S∗i , p) = A(S∗l , i) + A(S∗r , i) +

19

A(i, φi(S
∗)). The last inequality follows from the definition of rounding. This completes the proof

of the second case.

Theorem 4.4 allows us to prove the performance guarantee of the FPTAS, which we summarize

in the next theorem.

Theorem 4.5. For any ε > 0 grid, we have that R̄C ≥ R∗C(1− nε).

Proof. From Theorem 4.4 we have V̄r̄(0, dA(S∗, 0) − ε|T |R∗Ce) ≤ Cr̄(0, A(S∗, p)) ≤ C. We now

observe

R̄C = max
a
{V̄r̄(0, a) : V̄r̄(0, a) ≤ C}

≥ dA(S∗, 0)− ε|T |R∗Ce

≥ R∗C − ε|T |R∗C
= R∗C(1− nε)

To complete our analysis we analyze the running time of the FPTAS. Calculating R̄C involves

computing the value functions V̄i(p, a). There are a total of O(nd(1 + log(rmax))/ε) value functions

since there are O(nd) total (i, p) pairs and a can take on O((1 + log(rmax))/ε) values. For this

same reason, we can solve the inner minimization by enumerating all splits in the revenue in time

that is O((1 + log(rmax)/ε). As discussed previously, in order to achieve R∗C(1− ε′) we must choose

ε = ε′/n which gives a total run time of O(n3d(1 + log(rmax))/ε)2) which is polynomial in 1/ε′.

Algorithm 4 shows how to recover the assortment that achieves this revenue guarantee.

5 Network Revenue Management

In this section, we show that when customers choose according to the nonparametric tree model,

there is a natural segue from the assortment optimization problems considered in the previous sec-

tions to dynamic assortment problems where a retailer must manage a collection of scarce resources

over a pre-specified selling horizon. More specifically, we consider a well known version of such a

dynamic assortment problem known as the network revenue management problem. In this setting,

a retailer has access to a collection of products which each consume different amounts of various

resources. During each time period of the selling horizon, the retailer must decide which products

to make available for purchase subject to the remaining capacities of each resource. The retailer

wants to offer selections that maximize expected revenue over the selling horizon. We assume that

customer choice in each time period is governed by the nonparametric tree model. This problem

setting captures the scenario where an airline must make offer decisions regarding a collection of

itineraries, each comprised of a set of flight legs, over a selling horizon.

20

Let the set M = {1, . . . ,m} index the set of resources and the set N = {1, . . . , n} index the

set of products. Additionally, there is a no-purchase option product 0. The incidence matrix

A ∈ {0, 1}m×n captures the product-resource relationships, where entry av,i ∈ A is 1 if product i

consumes resource v and 0 otherwise. A sale of product i ∈ N generates revenue ri but also uses up

one unit of each resource in {v : av,i = 1}. Let cv ∀ v ∈M be the initial capacities of each resource.

The selling horizon is discretized into T time periods indexed by {1, . . . , T}. At the beginning of

each time period, the airline must decide which set of itineraries to make available for purchase

subject to the remaining capacities on each flight with the goal of maximizing expected revenue.

An exact solution method exists for this problem via a dynamic programing approach. Let

xit denote the remaining capacity on flight leg i at time t so that xt = {xv,t : v ∈ M} gives the

remaining capacities on each flight leg. We let U(xt) = {j ∈ N : av,jxv,t ≥ 1 ∀ v ∈ M} represent

the set of itineraries each of whose flight legs all have at least one remaining seat. At the beginning

of each time period t, the airline thus must choose a set S ⊆ U(xt) to make available to inquiring

customers with the extension of maximizing the expected revenue accrued over the time horizon.

The following DP solves the problem optimally:

Vt(xt) = max
S⊆U(xt)

∑
j∈S

Prj(S)[rj + Vt+1(xt −
∑
v∈M

av,jev)] + (1−
∑
j∈S

Prj(S))Vt+1(xt), (12)

where ei is a |M |-dimensional unit vector with a one in its ith component. The boundary conditions

are VT+1(·) = 0 and Vt(~0) = 0 ∀ t.

Our goal is to solve (12), however, computing the exact value function proves to be intractable

for large problem instances since the size of the state space grows exponentially in the number of

resources. As a result, in the remainder of this section, we consider a well-known deterministic

approximation to the value functions that has been shown to work well in practice.

A popular approximation to the network revenue management problem assumes that the other-

wise stochastic demands take on their expected values and are thus allowed to take on non-integer

values. For this approach, we introduce decision variables h(S) for all S ⊆ N that represent the

fraction of time that each subset of products is offered over the selling horizon. In this case, the ex-

pected revenue generated over the selling horizon can be represented as T
∑

S⊆N
∑

i∈S rih(S)Pri(S).

Similarly, the expected resource consumption over the selling horizon for each resource v ∈M can

be expressed as T
∑

S⊆N
∑

i∈S h(S)av,iPri(S). The Choice-Based Deterministic Linear Program

(CBLP) for the network revenue management problem is given below:

ZCBLP = max
h(S)≥0

T
∑
S⊆N

∑
i∈S

rih(S)Pri(S) (CBLP)

s.t. T
∑
S⊆N

∑
i∈S

h(S)av,iPri(S) ≤ cv ∀ v ∈M∑
S

h(S) = 1.

21

The CBLP, as stated, is generally solved using constraint generation, however this approach can

become quite tedious since the number of decisions variables grows exponentially in the number

of products. Next, we give a simple linear programming formulation for the unconstrained static

problem given in (1), which allows us recast the CBLP as an equivalent Reduced Deterministic

Linear Program (RDLP) where the number of decision variables and constraints is O(n2).

Consider the following Linear Program:

RLP = max
(α,β)

∑
i∈N

∑
p∈Φ(i)

αi,pA(i, p) (LP)

s.t.

αn,0 + βn,0 = 1 (13)

αi,p + βi,p = βPi,p ∀ i ∈ N , p ∈ Φ(i) \ Pi (14)

αi,p + βi,p =
∑

k∈Φ(Pi)

αPi,k ∀ i ∈ N , p = Pi (15)

0 ≤ αi,p, βi,p ≤ 1 (16)

The decision variables αi,p can be interpreted as the proportion of subsets S that product i is

offered and p is i’s closest offered predecessor (product p = 0 indicates no predecessor is offered).

Conversely, βi,p is the proportion of subsets in which product i is not offered and p is its closest

offered predecessor. The term A(i, p) in the objective is the adjusted revenue function defined in

Section 3. Recall that Φ(i) is the set of all predecessors of product i, including the no-purchase

option. Since in problem (1) we consider a one period assortment problem, one would expect there

to exist an integer optimal solution which offers one assortment with certainty, and this turns out

to be the case. As an intermediate step to proving the correctness of LP, we first show two special

properties of its feasible region that will be useful when we come back to the revenue management

setting.

Proposition 5.1. Any feasible solution (α, β) to LP induces a distribution f over the assortment

S ⊆ N where

fS(α, β) =
∏
i∈N

1i∈Sαi,φi(S) + 1i/∈Sβi,φi(S)

αi,φi(S) + βi,φi(S)
,

where we set ·/0 = 0.

Proof. Since α, β ≥ 0 in LP, we know that fS(α, β) ≥ 0. All that is left to show is that∑
S⊆N fS(α, β) = 1. For arbitrary assortment S′ ⊆ N , define

fS(α, β, S′) =
∏

i∈N\S′

1i∈Sαi,φi(S) + 1i/∈Sβi,φi(S)

αi,φi(S) + βi,φi(S)
.

22

Consider arbitrary leaf node q, and note that:∑
S⊆N

fS(α, β) =
∑

S⊆N\q

fS(α, β,N \ q)
(

αq,φi(S)

αq,φi(S) + βq,φi(S)
+

βq,φi(S)

αq,φi(S) + βq,φi(S)

)
=

∑
S⊆N\q

fS(α, β),

where the first equality follows since we sum over every assortment not considering product q and

then we consider either adding product q to this assortment with the
αq,φi(S)

αq,φi(S)+βq,φi(S)
term or not

adding it with
βq,φi(S)

αq,φi(S)+βq,φi(S)
. Applying this result recursively for n− 1 iterations (choosing a leaf

q on the remaining tree) gives: ∑
S⊆N

fS(α, β) =
∑

S⊆N\(N\n)

fS(α, β)

= αn,0 + βn,0 = 1,

as desired.

The above proof utilizes the notion that one can interpret the variables αi,p as the fraction of

offered assortments in which i ∈ S and p = φi(S) and so Pr(i ∈ S) =
∑

p∈Φ(i) αi,p . Conversely,

βi,p can be interpreted as the fraction of offered assortments where i /∈ S and p = φi(S), which

means that Pr(i /∈ S) =
∑

p∈Φ(i) βi,p . Further, with this interpretation, it is not difficult to derive

the conditional probability Pr(i ∈ S|φi(S) = p) =
αi,p

αi,p+βi,p
, which are the individual terms in our

expression for

fS(α, β) =
∏
i∈S

Pr(i ∈ S|φi(S) = p)
∏
i/∈S

Pr(i /∈ S|φi(S) = p).

The following corollary uses these expressions to derive an alternate representation for the objective

function of LP:

Corollary 5.2. Let (α∗, β∗) be the optimal decision variables for LP. Then we have that α∗i,p =∑
S:i∈S,p=φi(S) fS(α∗, β∗) and so the optimal objective of LP can be written

∑
S⊆N fS(α∗, β∗)R(S)

Proof. We have that∑
S:i∈S,p=φi(S)

fS(α∗, β∗) = Pr(i ∈ S|p = φi(S))P (p = φi(S))

= Pr(i ∈ S|p = φi(S))(
∏

k∈(Tp∩Φ(i))\p

Pr(k /∈ S|p ∈ S))Pr(p ∈ S)

= (
αi,p

αi,p + βi,p
)(

∏
k∈(Tp∩Φ(i))\p

βk,p
αk,p + βk,p

)(
∑
r∈Φ(p)

αp,r)

= (
αi,p

αi,p + βi,p
)(

βPi,p
αPi,p + βPi,p

) . . . (
βC̄p,p

αC̄p,p + βC̄p,p
)(
∑
r∈Φ(p)

αp,r) = αi,p,

23

where C̄p = Φ(i) ∩ Cp is the child of p in Φ(i). The first and second equality results by noting

that the fraction of assortments under f where i ∈ S and φi(S) = p are simply those that include

products i and p and do not include any of the products in the path between these two prod-

ucts, which can be represented as (Tp ∩ Φ(i)) \ p. The final equality results due cancellation when

the constraints of (13)-(15) are applied. Using this result, we get that
∑

i∈N
∑

p∈Φ(i) αi,pA(i, p) =∑
i∈N

∑
p∈Φ(i)A(i, p)

∑
S:i∈S,p=φi(S) fS(α, β) =

∑
S⊆N fS(α, β)

∑
i∈S A(i, φi(S)) =

∑
S⊆N fS(α, β)R(S),

which completes the proof. The first equality follows from the alternate interpretation of the αi,p

given at the beginning of the corollary and the second equality results from flipping the order of

summation. The final equality is a result of Corollary 3.2.

The above Corollary proves useful in showing our next result, namely that the LP solves problem

(1).

Theorem 5.3. RLP = R∗ for the unconstrained assortment optimization problem.

Proof. We leave the proof to Appendix B.

This result shows that in one optimal solution to LP is α∗i,p, β
∗
i,j ∈ {0, 1} given in (17). We

can recover the optimal assortment as follows S∗ = {i ∈ N :
∑

j∈Φ(i) α
∗
i,p = 1}. With this new

formulation for problem (1) we are ready to formulate the RDLP:

ZRDLP = max
(α,β)

T
∑
i∈N

∑
j∈Φ(i)∪{0}

αi,jA(i, j) (RDLP)

s.t.

αn,0 + βn,0 = 1

αi,p + βi,p = βPi,p ∀ i ∈ N , p ∈ Φ(i) \ Ci
αi,p + βi,p =

∑
k∈Φ(Pi)

αPi,k ∀ i ∈ N , p = Pi

T
∑
i∈N

av,i[
∑
p∈Φ(i)

αi,p(Pri(i)−Bp,i)−
∑
j∈Ti\i

αj,iBj,i] ≤ cv ∀ v ∈M

0 ≤ αi,p, βi,j ≤ 1

The decision variables can be interpreted in the same way as they were for LP, namely, αi,p can

be interpreted as the probability that product i is offered when its closest offered predecessor is

product j, and βi,j is the probability that i is not offered when j is its closest offered successor.

The following theorem relates the CBLP to the RDLP:

Theorem 5.4. The RDLP is equivalent to the CBLP in that they produce the same optimal

objective function for any choice of customer classes and revenues rj ∀ j ∈ N .

Proof. We leave the proof to Appendix B

24

Theorem 5.4 reduces the CBLP to an equivalent linear program where the number of decision

variables and constraints is O(nd), where d is the depth of the tree. Though we can solve the

RDLP efficiently for large product networks, the optimal solution does not immediately provide

a policy that one could implement, as the weights {h(S) : S ⊆ N} do. Fortunately, by Theorem

5.4, we can take the optimal solution (α∗, β∗) to the RDLP and then recover the optimal solution

to the CBLP by setting h(S) = fS(α∗, β∗) by Proposition 5.1. As a result, sampling from h(S)

requires merely sampling from fS(α, β), which can be done in O(n) using Algorithm 1 with the

optimal solution to the RDLP as input.

Initialize: S̃ = {0} ;
for i = n to 1 do

if U [0, 1] < αi,φi(S̃)/(αi,φi(S̃) + βi,φi(S̃)) then

S̃ = S̃ ∪ {i} ;
end

end

return S̃

Algorithm 1: Sampling from fS(α, β)

6 Computational Experiments

In this section, we provide computation experiments which demonstrate the efficiency of the dy-

namic program presented in (5) to solve the costed assortment problem. We benchmark ourselves

against the algorithm provided for intrees in [?]. This algorithm has a theoretical runtime that is

exponential is the number of products, but has been been shown to work far better in practice.

Since this algorithm is only valid when applied to problems where the least preferred product of all

customer types is the root node, we restrict our computational experiments to cases of this nature.

6.1 Experimental Setup

In our computational experiments we generate a number of intree instances to test the efficacy

of our dynamic program. For each instance, we solve the costed assortment problem using two

different strategies. The first strategy utilizes the dynamic program given in (5), which we refer to

as DP. The second approach uses the algorithm given in [?], which we refer to as ALG3 since it is

labeled Algorithm 3 in this paper. Our goal is to compare the performance of DP and ALG3 by

measuring the respective CPU seconds required to solve each instance of the assortment problem.

We generate each of the intree instances in the following manner. Each of the instances that we

consider consists of customer classes derived from a complete binary tree. In other words, the total

number of nodes or products in each intree is n = 2d− 1 where we vary the number of levels in the

tree d ∈ {3, 4, . . . 8}. Since ALG3 is only valid when the least preferred product of each customer is

25

DP ALG3
d Avg Secs. Max Secs. Avg Secs. Max Secs.

3 2.6×10−4 3.2×10−4 4.4×10−4 ×10−3

4 7.7×10−4 8.9×10−4 1.9×10−3 0.017
5 2.1×10−3 2.3×10−3 0.011 0.089
6 5.4 ×10−3 5.7 ×10−3 1.00 30.78
7 0.014 0.015 9.92 262.5
8 0.033 0.035 NA NA
9 0.081 0.084 NA NA

10 0.19 0.20 NA NA

Table 1: Comparing DP and ALG3 in terms of CPU seconds required to solve the costed assortment
problem

the root node, we restrict the set of customer classes derived from each intree to be of this variety.

For each instance, we consider all n customer types and assume that each type arrives with equal

probability. So if the root node is given index n, we consider all customer types whose preference

orderings take the form {i, . . . , n} ∀ i ∈ N . The revenues of each products are generated uniformly

from the interval [0, n]. Once the revenues have been generated for a given problem instance, we

then generate a fixed offer cost k for each product uniformly over the interval [0, rmin], where rmin

is the smallest randomly generated revenue for the given instance. In this way, we ensure that the

cost of offering a product never exceeds the revenue gained from a sale of the product. We leave

out substitution costs since they do not necessarily complicate the assortment problems we study

and we see no obvious way of estimating such costs.

6.2 Computational Results

Table 1 summarizes our computational results. In all cases we used Python 2.7 on a Dell with an

Intel Core i7-2600 Processor with 2.4 GHz and 8GB of RAM. The first column gives the number

of levels in the intrees that we consider. For each value of d, we generate 100 unique intrees using

the method described in the previous section. The second column gives the average CPU seconds

required for DP to solve the 100 instances and the third column gives the maximum CPU seconds

for DP over these 100 instances. Columns four and five give these same two statistics for ALG3.

The results in Table 1 indicate that DP significantly outperforms ALG3 in both average perfor-

mance and worst case performance. Most notably, we confirm that DP does in fact scale polyno-

mially with the number of nodes, while ALG3 appears to be on more of an exponential trajectory.

Further, for DP, we observe that the maximum runtime is at most 25% larger than the average

runtime over all values of d. On the contrary, when d = 7, the maximum runtime for ALG3 ex-

ceeded the average runtime by over 2500%. Since the maximum runtime appears to be growing

exponentially with d, it was not possible to get a sense of how ALG3 performs on the bigger in-

stances where d > 7. On the other hand, DP solves instances of the costed assortment problem

with over 1000 products in fractions of a second.

26

7 Conclusion

In this paper, we began by studying assortment problems on trees. We give the first polynomial

time algorithm to solve the general tree case for linear customer classes. We formulate this problem

as a dynamic program where the offer decision for each product can be made by simply storing

each node’s closest predecessor. Through a series of computation experiments we show that our

algorithm is more efficient than the algorithm proposed in [?] for randomly generated cases of

intrees. We then generalize this dynamic program to allow us to solve assortment problems on

general trees where arcs are allowed to travel in either direction. Further, we also give a dynamic

programming formulation that can be solved in polynomial time for the cardinality constrained

assortment problem, where there is a limit on the total number of products that can be included

in the offered assortment, as well as for the costed case, where there are costs for offering products

and for customers substituting down their respective preference list. The assortment problem for

the space constrained version of the assortment problem is NP-Hard and so we give an FPTAS for

this problem.

Next, we consider the network revenue management problem. First, we show that the uncon-

strained assortment problem can be solved through a simple linear program with O(n2) variables

and constraints. We then use this linear program to show that if the customers choose according to

the intree choice model, then the deterministic linear program can immediately be reduced to an

equivalent linear program whose numbers of decision variables increases only quadratically with the

numbers of products and linearly in the number of resources. We develop an algorithm to recover

the optimal solution to the original deterministic linear program by using the optimal solution to

the reduced linear program. This algorithm allows us to efficiently recover the frequency with which

we should offer each subset of products to customers by using the optimal solution to the reduced

linear program.

There are many direction for future research. First, it is unknown, at least to our knowledge,

whether the assortment remains tractable when the tree structure of the graph is broken by allowing

arcs to pass between levels. When this is the case, there can be multiple paths between nodes in

the graph and thus the dynamic programming structure of (4) is no longer valid. The result of

[?] shows that the problem is NP-Hard when arcs are allowed to cross levels arbitrarily, but it is

unclear whether or not the assortment problem is tractable when arcs can only cross one level,

for example. A second potential direction is considering the assortment problem on a constant

number of intrees. Again, to our knowledge, it is unclear whether this problem admits an optimal

polynomial time solution. In this case, a product can potentially have different closest predecessors

in each tree, which renders our dynamic programming idea ineffective.

27

A Algorithms

Initialize: S = {0} ;
for i = n to 1 do

if A(i, φi(S)) +
∑
j∈Ci

V (j, i) >
∑
j∈Ci

V (j, φi(S)) then

S = S ∪ {i} ;
end

end
return S

Algorithm 2: Finding the optimal assortment for the general tree case

Initialize: S̃ = {}, ;
Dictionary which stores capacity allocated to each node;
Initialize: D[n] = C;
for i = n to 1 do

Find i’s current predecessor;

p = φi(S̃) #Find the optimal allocation of capacity to i’s parents when i is offered;
(col , c

o
r) = arg max

cl,cr:cl+cr≤D[i]−1
Vl(i, cl) + Vr(i, cr);

#Find the optimal allocation of capacity to i’s parents when i is not offered ;
(cnl , c

n
r) = arg max

cl,cr:cl+cr≤D[i]
Vl(p, cl) + Vr(p, cr);

if riPri(i)− riBp,i − rpBi,p + Vl(i, c
o
l) + Vr(i, c

o
r) > Vl(p, c

n
l) + Vr(p, c

n
r) then

S̃ = S̃ ∪ {i} ;
D[l] = col ;
D[r] = cor;

end
else

D[l] = cnl ;
D[r] = cnr ;

end

end

return S̃

Algorithm 3: Finding the optimal assortment for the capacity constrained intree case

28

Initialize: S̃ = {}, ;
Dictionary which stores adjusted revenue to-go allocated to each node;
Initialize: D[n] = r;
for i = n to 1 do

Find i’s current predecessor;

p = φi(S̃) #Find the optimal allocation of revenue to i’s parents when i is offered ;
(aol , a

o
r) = min

al+ar≥D[i]−A(i,p)
Vl(i, al) + Vr(i, ar) ;

#Find the optimal allocation of revenue to i’s parents when i is not offered ;
(anl , a

n
r) = min

al+ar≥D[i]
Vl(p, al) + Vr(p, ar) ;

if ci + Vl(i, a
o
l) + Vr(i, a

o
r) < Vl(p, a

n
l) + Vr(p, a

n
k) then

S̃ = S̃ ∪ {i} ;
D[l] = aol ;
D[r] = aor;

end
else

D[l] = rnl ;
D[r] = rnr ;

end

end

return S̃

Algorithm 4: Finds the minimum weight assortment that achieves a revenue of r.

29

B Proofs

Proof of Theorem 4.1

Proof. We reduce the knapsack problem to the space constrained assortment problem given in (8).

An instance of the knapsack problem is characterized by a set of item N = {1, . . . , n} each with a

value vi and a space consumption ai. Also given as input is a total size of the knapsack C. The

goal is to determine which items to include in a collection so that the total space consumption is

less than or equal to C and the total value of the included items is maximized.

The reduction to problem (8) is very simple and works as follows. The set of customer classes

will only be singletons and there will be a customer class for every item in the knapsack problem.

The arrival probability for each customer class will be 1/n. The revenue for each product will be

nvi and the space consumption will be ai. The space limit on the offered assortment is C. As a

result, when we offer a product, we accrue a revenue of exactly vi and consume ai of space. The

reduction is complete, as this is exactly the knapsack problem.

Proof of Theorem 5.3

Proof. Let S∗ be the optimal assortment. By Corollary 5.2, we immediately have that R∗ ≥ RLP

since RLP can be viewed as the expected revenue of an assortment drawn from f . To conclude the

proof, we show that RLP ≥ R∗ and in doing so we show how to recover the optimal assortment

from the optimal solution to LP.

Given S∗, we show to construct a feasible solution to LP, which achieves an objective of R∗.

Let 
α∗i,p = 1, β∗i,p = 0 if i ∈ S∗, φi(S∗) = p

α∗i,p = 0, β∗i,p = 1 if i /∈ S∗, φi(S∗) = p

α∗i,p = β∗i,p = 0 if φi(S
∗) 6= p

(17)

We can write the objective value for this solution as∑
i∈N

∑
j∈Φ(i)∪{0}

α∗i,pA(i, p) =
∑
i∈S∗

∑
p∈Φ(i):p=φi(S∗)

α∗i,pA(i, p) =
∑
i∈S∗

α∗i,φi(S∗)A(i, φi(S
∗)) = R∗.

The final equality follows since α∗i,φi(S∗) = 1 ∀ i ∈ S∗ by (17) and by Corollary 3.2. All that is

left to show is that the α∗i,p, β
∗
i,p of (17) is feasible in (13)-(15). Clearly constraint (13) is satisfied

because φn(S) = 0 ∀ S ⊆ N . We consider the constraints (14) and (15) in cases, we start with the

constraint in (14):

Case 1: p = φi(S
∗)

30

If i ∈ S∗, we have that α∗i,p = 1 and if i /∈ S∗ we have that β∗i,p = 1 and so the left hand side

of constraint (14) reads α∗i,p + β∗i,p = 1. Further since constraint (14) applies to p 6= Pi we know

that Pi /∈ S∗, since otherwise φi(S
∗) = Pi. This means means that φPi(S

∗) = p and so β∗Pi,p = 1 as

desired.

Case 2: p 6= φi(S
∗)

The left hand side of constraint (14) reads α∗i,p + β∗i,p = 0 independent of whether i is in S∗ or

not. Further, since p 6= Pi we know that φPi(S
∗) 6= p so β∗Pi,p = 0 as desired.

Next, consider the constraints of (15) in these same two cases:

Case 1: p = φi(S
∗)

The left hand side of this constraint reads α∗i,p + β∗i,p = 1 since α∗i,p = 1 if i ∈ S∗ and β∗i,p = 1 if

i /∈ S∗. Since p = Pi, then we have that
∑

p∈Φ(Pi)
α∗Pi,p = α∗Pi,φPi (S

∗) = 1 since Pi ∈ S∗.

Case 2: p 6= φi(S
∗)

The left hand side of constraint (15) reads α∗i,p + β∗i,p = 0 independent of whether i ∈ S∗.

Further, since p = Pi we know that Pi /∈ S∗ and so αPi,p = 0 ∀ p ∈ Φ(Pi).

This shows that the solution given in (17) is feasible to LP and achieves objective R∗. Thus we

have RLP ≥ R∗ and since we earlier proved that RLP ≤ R∗ we know that RLP = R∗ as desired.

Proof of Theorem 5.4

Proof. Let (α∗, β∗) be the optimal solution to the RDLP. We show how to construct a feasible

solution to CBLP that has objective ZRDLP . To do so, set ĥ(S) = fS(α∗, β∗) as defined by

Proposition 5.1, which is possible since (α∗, β∗) is feasible to LP. By Corollary 5.2 we know that the

objective of this solution in ZRDLP . Further we know that
∑

S⊆N ĥ(S) = 1 since f is a probability

distribution. All that is left to show is that the first constraint of CBLP is satisfied by ĥ(S).

Re-ordering the sums, we can rewrite this first constraint as T
∑

i∈S av,i
∑

S:i∈S h(S)Pri(S) ≤ cv.

After plugging in the solution ĥ(S) and the analytic expression for the purchase probabilities given

31

in (3), the left hand side of this constraint becomes :

= T
∑
i∈S

av,i[
∑
S:i∈S

fS(α∗, β∗)(Pri(i)−Bφi(S),i −
∑

j∈δi(S)

Bj,i)]

= T
∑
i∈S

av,i[
∑
S:i∈S

fS(α∗, β∗)(Pri(i)−Bφi(S),i)−
∑
S:i∈S

fS(α∗, β∗)
∑

j∈δi(S)

Bj,i]

= T
∑
i∈S

av,i[
∑
p∈Φ(i)

(Pri(i)−Bp,i)
∑

S:i∈S,φi(S)=p

fS(α∗, β∗)−
∑
j∈Ti\i

Bj,i
∑

S:j∈S,φj(S)=i

fS(α∗, β∗)]

= T
∑
i∈S

av,i[
∑
p∈Φ(i)

α∗i,p(Pri(i)−Bp,i)−
∑
j∈Ti\i

Bj,iα
∗
j,i] ≤ cv,

as desired. This completes the proof that Ŝ is feasible and thus we have that ZCBLP ≥ ZRDLP .

Next we show that ZCBLP ≤ ZRDLP by taking an optimal solution h∗(S) to CBLP and

constructing a feasible solution to RDLP with the same objective as follows:

α̂i,p =
∑

S:i∈S,φi(S)=p

h∗(S) ∀ i, p ∈ N (18)

β̂i,p =
∑

S:i/∈S,φi(S)=p

h∗(S) ∀ i, p ∈ N

Using the proof of Corollary 5.2 with fS() replaced by h∗(S), it is easy to see that the objective

of this solution is ZRDLP . All that is left is to show feasibility. We consider the constraints of

RDLP one by one:

First Constraint: Plugging in our definition of α̂i,p, β̂i,p, this first constraint reads
∑

S:n∈S h(S) +∑
S:n/∈S h(S) =

∑
S⊆N h(S) = 1 as desired.

Second Constraint: This constraint becomes
∑

S:φi(S)=p h(S) =
∑

S:Pi /∈S,φPi (S)=p h(S) = β̂Pi,p. The

first equality follows since the second constraint assumes p 6= Pi and this Pi is not offered.

Third Constraint: This constraint reads
∑

S:φi(S)=p h(S) =
∑

p∈Φ(Pi)

∑
S:Pi∈S,φPi (S)=p h(S) =

∑
p∈Φ(Pi)

α̂Pi,p

as desired. The first equality follows since p = Pi and thus we can rewrite the first sum fixing that

Pi is offered and summing over all its predecessors. The final equality follows by our definition of

α̂i,p.

32

Fourth Constraint: The left hand side of the resource capacity constraint becomes:

= T
∑
i∈N

av,i[
∑
p∈Φ(i)

∑
S:i∈S,φi(S)=p

h∗(S)(Pri(i)−Bp,i)−
∑
j∈Ti\i

∑
S:j∈S,φj(S)=i

h∗(S)Bj,i]

= T
∑
i∈N

av,i[
∑
S:i∈S

h∗(S)(Pri(i)−Bp,i)−
∑
S:i∈S

h∗(S)
∑

j∈δi(S)

Bj,i]

= T
∑
i∈N

av,i
∑
S:i∈S

h∗(S)Pri(S) ≤ cv.

Since all constraints are satisfied we have that the α̂i,p, β̂i,p of (18) is feasible to the RDLP and

thus we have that ZCBLP ≤ ZRDLP . This shows that ZCBLP = ZRDLP .

33

