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Abstract. In this paper we study the problem of minimizing the weighted sum of completion times
of jobs with release dates on a single machine. We develop two algorithms that rely on “the simplest
[linear program] relaxation” [8]. For the first algorithm we consider the online setting where we gain
knowledge of a job on its release date and produce a schedule as the machine processes jobs. We develop
an online dual fitting algorithm with an approximation guarantee of 3. This is the first online algorithm
to use this LP as a lower bound. For the second algorithm we work in the off-line setting and develop
a primal-dual algorithm with an approximation guarantee of 2.42. This algorithm provides the current
best upper bound on the integrality gap of this simple LP formulation.

1 Introduction

Scheduling problems involve scheduling jobs on machines to optimize some objective function.
Many scheduling problems have been studied in the literature, each defined by different objective
functions and different constraints on admissible schedules. For an overview of these problems we
refer the reader to the surveys of Queyranne and Schulz [8], Graham et al. [1] and Chekuri and
Khanna [16].

In this paper we study the problem of minimizing the weighted sum of completion times on
a single machine with release dates, denoted by 1|rj |

∑
j wjCj [1]. In this problem we are given a

set of n jobs J = {1, 2, . . . , n}, each with a processing time pj > 0, weight wj ≥ 0 and release
date rj ≥ 0. Our aim is to schedule these jobs non-preemptively on a single machine to minimize∑

j wjCj , where Cj denotes the completion time of job j in the schedule. This problem is NP-hard,
even if the weight of every job is 1 [2]. When all release dates are 0 the problem is solved optimally
by using Smith’s rule.

A significant amount of work has been done on this problem. Polynomial time approximation
schemes have been discovered [3, 16]. There are also several linear programming based approxima-
tions [14, 13, 17–19, 9, 12]. The linear programming based techniques derive primarily from three
different LP formulations (discussed in detail in [8]): the completion time LP (LP1), the comple-
tion time LP with shifted parallel inequalities (LP2), and the preemptive time indexed LP (LP3).
Most algorithms use LP2 and LP3 [14, 13, 17–19]. Goemans et al. [14] study these two LP formula-
tions in detail, show their equivalence and present a LP-rounding algorithm with an approximation
guarantee of 1.6853. LP1 is not so well studied. Schulz [12] studies LP1 and derives a constant
factor approximation using it. Hall et al. [9] improves on this result and derives a 3 approximation
algorithm using LP1, the current best guarantee for the problem using this LP. Like most other
algorithms, the algorithms of Schulz and Hall et al. use the technique of LP rounding.

? Research supported by Rutgers University Research Council Grant and by NSF award CCF-0830569



Our work focuses on understanding LP1; we provide two combinatorial algorithms who’s ap-
proximation guarantees give an upper bound on LP1’s integrality gap. The first algorithm is an
online dual-fitting algorithm that achieves an approximation guarantee of 3. In the online setting
we gain knowledge of a job on its release date and for each time t we must construct the schedule
until time t without any knowledge of jobs that are released afterwards [9]. To the best of our
knowledge this is the first online algorithm that uses LP1; hence it is the first online algorithm to
give an upper bound on the integrality gap of LP1. The second algorithm is a primal-dual algorithm
that yields an approximation guarantee of 1 +

√
2 (≈ 2.42), improving on the result of Hall et al.

[9]. The second algorithm gives the current best upper bound on the integrality gap of LP1. Both
algorithms are simple to implement and run in O(n log(n)) time.

2 Linear Program Formulation

Several linear programming relaxations for the problem are well known [8]. The linear programming
relaxation we use was first studied extensively by Schulz [12].

For a job j let Cj represent its completion time. For any set S ⊆ J let p(S) =
∑

j∈S pj and

p2(S) =
∑

j∈S p
2
j . The completion time linear programming formulation is given by

min
∑
j∈J

wjCj

subject to Cj ≥ rj + pj , ∀j ∈ J∑
j∈S

pjCj ≥
p(S)2 + p2(S)

2
, ∀S ⊆ J

Cj ≥ 0, ∀j ∈ J

The justification for the second constraint is as follows. By the problem definition no two jobs can
be scheduled at the same time. Consider any schedule for the jobs in S ⊆ J . Assume w.l.o.g. that
the jobs are ordered by their completion time. If we set rj = 0 for all jobs, then there is no time

the machine is not processing a job. In this case we get that Cj =
∑j

k=1 pk and using algebra

|S|∑
j=1

pjCj ≥
|S|∑
j=1

pj

j∑
k=1

pk =

|S|∑
j=1

j∑
k=1

pjpk =
P (S)2 + p2(S)

2
.

Combining this with the fact that
∑|S|

j=1 pjCj can only be greater when there are non-zero release
times gives us the constraint.

The dual linear program is given by

max
∑
j∈J

αj(rj + pj) +
∑
S⊆J

βS

(p(S)2 + p2(S)

2

)
subject to αj + pj

∑
S | j∈S

βS ≤ wj , ∀j ∈ J

αj ≥ 0, ∀j ∈ J
βS ≥ 0, ∀S ⊆ J
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Notice that there is a dual variable αj for every job j, a constraint for every job j, and a dual
variable βS for every subset of jobs S. The cost of any feasible dual solution is a lower bound on
OPT .

3 Dual Fitting Algorithm

The first step in the algorithm below is to sort the jobs by non-increasing order of weight over
processing time so that the set J ′ = {1, 2, . . . , n} of jobs satisfies w1

p1
≥ w2

p2
≥ . . . wn

pn
. The main idea

behind the algorithm is that after a job is released it is forced to wait from time rj to rj + pj , after
which it is eligible to be scheduled. When a job has finished waiting we say that it is available.
When the machine is free (no job is being processed), among the available jobs we select the job
with the smallest index in J ′ to be scheduled.

Algorithm 1 Dual Fitting Algorithm

J ′ ← list of jobs sorted by non-increasing
wj

pj

Q← ∅
t← 0
while J ′ 6= ∅ do
if t = rj + pj for some j ∈ J ′ then
Q← Q ∪ {j}
J ′ ← J ′ − j

end if
if machine is not processing a job then
if Q 6= ∅ then
j′ ← job in Q that appears earliest in J ′

schedule j′

Q← Q− {j}′
end if

end if
end while

Although this algorithm runs in pseudopolynomial time it can easily be made to run inO(n log(n))
time. We simply need to introduce a variable indicating when the machine will finish processing
the current job, say s, and increment time steps by min{minj∈J ′ rj + pj , s}.

Notice that this dual fitting algorithm is an online algorithm. At any time t we have only
considered jobs with release times less than t to be scheduled. Also, at any time t the schedule
before t cannot be altered. What remains to be analyzed is the performance guarantee achieved by
this algorithm.

3.1 Analysis for Dual Fitting Algorithm

To analyze the performance guarantee we first construct a dual infeasible solution. We let Sj
denote the first j jobs, {1, 2 . . . j}, after the jobs have been sorted by non-increasing

wj

pj
value. For
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convenience we let βj denote βSj .

αj = wj , ∀j ∈ J

βj =
wj
pj
−
∑
k>j

βk, for j = n down to 1

βS = 0, ∀S | ∀i ∈ J, S 6= Si

This infeasible solution is not a lower bound on OPT . We can, however, scale the values of the
variables in the infeasible solution to create a feasible solution. This is formalized in Lemma 1.

Lemma 1.
2

3

∑
j∈J

αj(rj + pj) +
1

3

∑
k∈J

βk

(p(Sk)2 + p2(Sk)

2

)
≤ OPT

Proof. We can verify that in the infeasible solution above, the nonzero αj variables constitute
a feasible dual solution. Similarly the set of nonzero βS variables constitute a feasible solution.
Since any convex combination of two feasible solutions yields a feasible solution, by scaling the αj
variables by a factor of 2

3 and the βS variables by a factor of 1
3 we obtain a new feasible solution.

Since any dual feasible solution is a lower bound on OPT the claim follows.

We will need two key lemmas to relate the cost of our solution to the dual feasible solution
described in Lemma 1.

Lemma 2. For any job j we have that wj = αj and
wj

pj
=
∑

i≥j βi.

Proof. This follows directly from the construction of the dual infeasible solution.

Lemma 3. The completion time, Cj, of any job j in our schedule satisfies Cj ≤ 2(rj +pj)+p(Sj).

Proof. Note that job j is eligible for processing at time rj + pj . Let’s first assume that no other job
is being processed at rj + pj . After j has completed its idle time the most that j will have to wait
before it begins processing is the amount of time it takes for j to be emptied from Q, which is at
most p(Sj). This implies that Cj ≤ rj + pj + p(Sj).

If at time rj + pj another job k is processing, then job k must have already completed its
idling period, so that rk + pk ≤ rj + pj . Therefore, pk ≤ rj + pj so that k will finish processing by
rj + pj + pk ≤ rj + pj + (rj + pj) = 2(rj + pj). Thus, Cj ≤ 2(rj + pj) + p(Sj) as desired.

We can now bound the cost of our solution.

Theorem 1. The dual fitting algorithm is a 3-approximation.

Proof. We will use use Lemma 2 and Lemma 3 to rewrite the cost of our solution in terms of αj ,
βj , pj and rj .

Cost =
∑
j∈J

Cjwj = 2
∑
j∈J

wj(rj + pj) +
∑
j∈J

p(Sj)
(wj
pj

)
pj (Lemma 3)

= 2
∑
j∈J

αj(rj + pj) +
∑
j∈J

pj
∑
k≥j

βkp(Sj) (Lemma 2)

= 2
∑
j∈J

αj(rj + pj) +
∑
k∈J

βk

(p(Sk)2 + p2(Sk)

2

)
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Finally, we can use Lemma 1 to bound the solution cost.

Cost ≤ 2
∑
j∈J

αj(rj + pj) +
∑
k∈J

βk

(p(Sk)2 + p2(Sk)

2

)
= 3
(2

3

∑
j∈J

αj(rj + pj) +
1

3

∑
k∈J

βk

(p(Sk)2 + p2(Sk)

2

))
≤ 3 ·OPT ut

4 Primal-Dual Algorithm

The primal-dual algorithm is inspired by Gandhi et al. [20]. In the algorithm below a feasible
schedule is built iteratively. Consider a particular iteration. Let J ′ be the set of jobs that aren’t
scheduled at the beginning of this iteration and let j be the job with the largest release time. Let
κ be some constant that will be optimized later. If rj > κ · p(J ′) we raise the dual variable αj until
the dual constraint for j becomes tight. We then schedule j to be processed before every previously
scheduled job.

If rj ≤ κ · p(J ′) we raise the dual variable βJ ′ until one of the constraints becomes tight for
some job j′ ∈ J ′. Job j′ is scheduled to be processed before every previously scheduled job.

Algorithm 2 Primal-Dual

J ′ ← J
while J ′ 6= ∅ do
j ← job with largest rj value
if rj > κ · p(J ′) then

αj ← wj − pj
∑
S|j∈S

βS

J ′ ← J ′ − j
else if rj ≤ κ · p(J ′) then
j′ ← arg minj{wj

pj
−
∑

S|j∈S βS}
βJ ′ ← wj′

pj′
−
∑

S|j∈S βS

J ′ ← J ′ − j′
end if
schedule the jobs in the reverse order that they were removed from J ′

end while

This algorithm can be implemented in O(n log(n)) time by maintaining two sorted lists of jobs:
one sorted by non-increasing rj value and the other sorted by non-increasing

wj

pj
value. We then

observe that when rj > κ · p(J) the job with highest rj value is removed and when rj ≤ κ · p(J)
the job with lowest

wj

pj
value is removed.

4.1 Analysis for Primal-Dual Algorithm

At any time during the algorithm the nonzero variables constitute a feasible dual solution. Assume
w.l.o.g. that the jobs in J = {1, 2, . . . , n} are indexed by their order in the schedule. That is, if j
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and k are jobs with j < k then j is scheduled before k. Let Sj be the set of jobs {1, 2, . . . , j}. We
let βj denote βSj for convenience.

Lemma 4. The following are properties of our algorithm.

(a) Every nonzero βS variable can be written as βj for some job j.

(b) For every set Sj that has a nonzero βj variable, if i ≤ j then ri ≤ κ · p(Sj).
(c) For every job j that has a nonzero αj variable, rj > κ · p(Sj).
(d) For every job j that has a nonzero αj variable, if i ≤ j then ri ≤ rj.

Each of these observations can easily be verified. We will also need two lemmas that relate our
algorithm to the constructed feasible dual solution.

Lemma 5. For every job j, wj = αj + pj
∑
k≥j

βk.

Proof. To prove the lemma we simply take note of the fact that a job j isn’t removed from J ′ until
the constraint for j becomes tight. Since all jobs are removed from J ′ all constraints are tight.

Lemma 6. For every job j, Cj ≤ max
i≤j
{ri}+ p(Sj).

Proof. Let r = max
i≤j
{ri}. After time r, all jobs in Sj are released. Hence, after time r job j will take

at most p(Sj) additional time to complete. The lemma follows.

Theorem 2. The algorithm above gives a (1 +
√

2)-approximation algorithm for 1|rj |
∑
j∈J

wjCj.

Proof. We use Lemma 5 to rewrite the cost of our solution in terms of the dual variables.

Cost =
∑
j∈J

wjCj =
∑
j∈J

(αj + pj
∑
k≥j

βk)Cj

=
∑
j∈J

αjCj +
∑
j∈J

pj
∑
k≥j

βkCj (1)

We will first bound
∑

j∈J αjCj .∑
j∈J

αjCj ≤
∑
j∈J

αj(max
i≤j
{ri}+ p(Sj)) (Using Lemma 6)

≤
∑
j∈J

αj(rj + p(Sj)) (Using (d) of Lemma 4)

< (1 +
1

κ
)
∑
j∈J

αj(rj + pj) (2) (Using (c) of Lemma 4)
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Now we bound
∑

j∈J pj
∑

k≥j βkCj .∑
j∈J

pj
∑
k≥j

βkCj ≤
∑
j∈J

pj
∑
k≥j

βk
(

max
i≤j
{ri}+ p(Sj)

)
(Using Lemma 6)

≤
∑
k∈J

βk
∑
j≤k

pj
(

max
i≤k
{ri}+ p(Sj)

)
≤ κ

∑
k∈J

βkp(Sk)
∑
j≤k

pj +
∑
k∈J

βk
∑
j≤k

pjp(Sj) (Using (b) of Lemma 4)

= κ
∑
k∈J

βkp(Sk)
2 +

∑
k∈J

βk

(p(Sk)2 + p2(Sk)

2

)
≤ (2κ+ 1)

∑
k∈J

βk

(p(Sk)2 + p2(Sk)

2

)
(3)

Combining (1), (2) and (3) we get

Cost ≤ (1 +
1

κ
)
∑
j∈J

αj(rj + pj) + (2κ+ 1)
∑
k∈J

βk

(p(Sk)2 + p2(Sk)

2

)
To get the best approximation guarantee we optimize κ. κ will be optimal when 1 + 1

κ = 2κ + 1,

which gives us that κ =
√
2
2 . This lets us derive the approximation guarantee.

Cost ≤ (1 +
√

2)
(∑
j∈J

αj(rj + pj) +
∑
k∈J

βk

(p(Sk)2 + p2(Sk)

2

))
≤ (1 +

√
2) ·OPT ut
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